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ABSTRACT

The distribution of galaxies in position and velocity around the centers of galaxy clusters encodes
important information about cluster mass and structure. Using the maxBCG galaxy cluster catalog
identified from imaging data obtained in the Sloan Digital Sky Survey, we study the BCG–galaxy
velocity correlation function. By modeling its non-Gaussianity, we measure the mean and scatter in
velocity dispersion at fixed richness. The mean velocity dispersion increases from 202 ± 10 km s−1

for small groups to more than 854 ± 102 km s−1 for large clusters. We show the scatter to be at
most 40.5± 3.5%, declining to 14.9± 9.4% in the richest bins. We test our methods in the C4 cluster
catalog, a spectroscopic cluster catalog produced from the Sloan Digital Sky Survey DR2 spectroscopic
sample, and in mock galaxy catalogs constructed from N-body simulations. Our methods are robust,
measuring the scatter to well within one-sigma of the true value, and the mean to within 10%, in the
mock catalogs. By convolving the scatter in velocity dispersion at fixed richness with the observed
richness space density function, we measure the velocity dispersion function of the maxBCG galaxy
clusters. Although velocity dispersion and richness do not form a true mass–observable relation,
the relationship between velocity dispersion and mass is theoretically well characterized and has low
scatter. Thus our results provide a key link between theory and observations up to the velocity bias
between dark matter and galaxies.
Subject headings: galaxies: clusters: general — cosmology — methods: data analysis

1. INTRODUCTION

Galaxy clusters play an important role in observa-
tions of the large-scale structure of the Universe. As
dramatically non-linear features in the matter distri-
bution, they stand out as individually identifiable ob-
jects, whose abundant galaxies and hot X-ray emit-
ting gas provide a rich variety of observable prop-
erties. Clusters can be identified by their galaxy
content (Bahcall et al. 2003; Gladders & Yee 2005;
Miller et al. 2005; Gerke et al. 2005; Berlind et al. 2006;
Koester et al. 2007a,b), their thermal X-ray emission
(Rosati et al. 1998; Böhringer et al. 2000; Popesso et al.
2004), the Sunyaev-Zeldovich decrement they produce
in the microwave background signal (Grego et al. 2000;
Lancaster et al. 2005), or the weak lensing signature
they produce in the shapes of distant background galax-
ies (Wittman et al. 2006). Each of these identification
methods also produces proxies for mass: e.g, the num-
ber of galaxies, total stellar luminosity, galaxy velocity
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dispersion, X-ray luminosity and temperature, or SZ and
weak lensing profiles.

Simulations of the formation and evolution of large-
scale structure through gravitational collapse provide
us with rich predictions for the expected matter dis-
tribution within a given cosmology (Evrard et al. 2002;
Springel et al. 2005). These predictions include not only
first-order features, like the halo mass function n(M,z),
but higher-order correlations as well, like the precise way
in which galaxy clusters are themselves clustered as a
function of mass. Comparisons of these theoretical pre-
dictions to the observed Universe provide an excellent op-
portunity to test our understanding of cosmology and the
formation of large-scale structure. The weak point in this
chain is that simulations most reliably predict the dark
matter distribution, while observations are most directly
sensitive to luminous galaxies and gas. Connections be-
tween observable properties and theoretical predictions
for dark matter have often been made through simplify-
ing assumptions that are hard to justify a priori.

Progress toward solving this problem has been made by
the construction of various mass–observable scaling rela-
tions, which are based on combinations of theoretical pre-
dictions and observational measurements (Levine et al.
2002; Dahle 2006; Stanek et al. 2006). However, knowl-
edge of the mean mass at a fixed value of the observ-
able is not sufficient to extract precise cosmological con-
straints given the exponential shape of the halo mass
function (Lima & Hu 2004, 2005). To perform precision
cosmology, we must understand the scatter in the mass–
observable relations as well.

Recently, Stanek et al. (2006) measured the scatter in
the temperature-luminosity relation for X-ray selected
galaxy clusters and used it to infer the scatter in the
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mass–luminosity relationship. Unfortunately, there are
relatively few measurements of the scatter in any mass–
observable relationship in the optical. (An exception is
an early observation of scatter in the velocity-dispersion–
richness relationship for a small sample of massive clus-
ters by Mazure et al. 1996.) For optically selected clus-
ters, the scatter is usually included as a parameter in the
analysis (e.g. Gladders et al. 2007; Rozo et al. 2007a,b).

The primary goal of this work is to develop a method
to estimate both the mean and scatter in the cluster
velocity-dispersion–richness relation. This comparison
between two observable quantities can be made without
reference to structure formation theory. The method de-
veloped is applied to the SDSS maxBCG cluster catalog-
a photometrically selected catalog with extensive spec-
troscopic follow-up. These methods are tested exten-
sively with both the C4 catalog (Miller et al. 2005), a
smaller spectroscopically-selected sample of clusters, and
new mock catalogs generated by combining N-body sim-
ulations with a prescription for galaxy population (Wech-
sler et al. 2007, in preparation).

Ultimately, we aim to connect richness to mass through
measurements of velocity dispersion. While the link
between dark matter velocity dispersion and mass is
known from N-body simulations to have very small scat-
ter (Evrard et al. 2007), the relationship between galaxy
and dark matter velocity dispersion (the velocity bias) re-
mains uncertain and will require additional study. Con-
straints on the normalization and scatter of the total
mass-richness relation obtained by this method are thus
limited by uncertainty in the velocity bias.

An outline of the SDSS data and simulations used in
this work is presented in §2. In §3, we provide a brief
overview of the maxBCG cluster finding algorithm and
the properties of the detected cluster sample. We will
focus in this paper on measurements of the BCG–galaxy
velocity correlation function (BGVCF), which is intro-
duced along with the various fitting methods we employ
in §4. Section 5 presents a new method for understand-
ing the scatter in the optical richness-velocity dispersion
relation and the computation of the velocity dispersion
function for the maxBCG clusters. Section 6 presents
measurements of the BGVCF as a function of various
cluster properties. We connect our velocity dispersion
measurements to mass in §7. Finally, we conclude and
discuss future directions in §8.

2. SDSS DATA AND MOCK CATALOGS

2.1. SDSS Data

Data for this study are drawn from the SDSS
(York et al. 2000; Abazajian et al. 2004, 2005;
Adelman-McCarthy et al. 2006), a combined imag-
ing and spectroscopic survey of ∼ 104 deg2 in the North
Galactic Cap, and a smaller, deeper region in the South.
The imaging survey is carried out in drift-scan mode
in the five SDSS filters (u, g, r, i, z) to a limiting
magnitude of r<22.5 (Fukugita et al. 1996; Gunn et al.
1998; Smith et al. 2002). Galaxy clusters are selected
from ∼ 7500 sq. degrees of available SDSS imaging
data, and from the mock catalogs described below, using
the maxBCG method (Koester et al. 2007b) which is
outlined in §3.

The spectroscopic survey targets a “main” sample of

galaxies with r<17.8 and a median redshift of z∼0.1
(Strauss et al. 2002) and a “luminous red galaxy” sample
(Eisenstein et al. 2001) which is roughly volume limited
out to z=0.38, but further extends to z=0.6. The “main”
sample composes about 90% of the catalog, with the “lu-
minous red galaxy” sample making up the rest. Velocity
errors in the redshift survey are ∼30 km s−1. We use
the SDSS DR5 spectroscopic catalog which includes over
640,000 galaxies. The mask for our spectroscopic catalog
was taken from the New York University Value-Added
Galaxy Catalog (Blanton et al. 2005).

2.2. Mock Galaxy Catalogs

In order to understand the robustness of our meth-
ods for measuring the mean and scatter of the relation
between cluster velocity dispersion and richness, we per-
form several tests on realistic mock galaxy catalogs. Be-
cause the maxBCG method relies on measurements of
galaxy positions, luminosities, and colors and their clus-
tering, these catalogs must reproduce these aspects of
the SDSS data in some detail.

In this work, we use mock catalogs created by the
ADDGALS (Adding Density-Determined Galaxies to
Lightcone Simulations) method (described by Wechsler
et al. 2007, in preparation) which is specifically de-
signed for this purpose. These catalogs populate a
dark matter light-cone simulation with galaxies using an
observationally-motivated biasing scheme. Galaxies are
inserted in these simulations at the locations of individ-
ual dark matter particles, subject to several empirical
constraints. The relation between dark matter particles
of a given over-density (on a mass scale of ∼ 1013M⊙)
is connected to the two point correlation function of
these particles. This connection is used to assign subsets
of particles to galaxies using a probability distribution
P (δ|Lr), chosen to reproduce the luminosity-dependent
correlation function of galaxies as measured in the SDSS
by Zehavi et al. (2005). The number of galaxies of a
given brightness placed within the simulations is deter-
mined from the measured SDSS r-band galaxy luminos-
ity function (Blanton et al. 2003). We consider galaxies
brighter than 0.4 L∗, because it is these galaxies that are
counted in the maxBCG richness estimate. Finally, col-
ors are assigned to each galaxy by measuring their local
galaxy density in redshift space, and assigning to them
the colors of a real SDSS galaxy with similar luminosity
and local density (see also Tasitsiomi et al. 2004). The
local density measure used is the fifth nearest neighbor
galaxy in a magnitude and redshift slice, and for SDSS
galaxies is taken from a volume-limited sample of the
CMU-Pitt DR4 Value Added Catalog11.

This method produces mock galaxy catalogs whose
galaxies reproduce several properties of the observed
SDSS galaxies. In particular, they follow the empir-
ical galaxy color–density relation and its evolution, a
property of fundamental importance for ridgeline-based
cluster detection methods. The process accounts for k-
corrections between rest and observed frame colors and
assigns realistic photometric errors. Each mock galaxy is
associated with a dark matter particle and adopts its 3D
motion. This is important, as it encodes in the motions
of the mock galaxies the full dynamical richness of the

11 Available at www.sdss.org/dr4/products/value added.
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N-body simulation. Galaxies may occupy fully virialized
regions, be descending into clusters for the first time, or
be slowly streaming along nearby filaments. This com-
plete sampling of the velocity field around fully realized
N-body halos is essential, as these mock catalogs allow
us to predict directly the velocity structure we ought to
observe in the data. Note that this simulation process,
by design, assumes no velocity bias between the dark
matter and the luminous galaxies, except for the BCG,
which is made by artificially placing the brightest galaxy
assigned to a given halo at its dynamic center.

In this work, we use two mock catalogs based on dif-
ferent simulations. The first is based on the Hubble Vol-
ume simulation (the MS lightcone of Evrard et al. 2002),
which has a particle mass of 2.25 × 1012M⊙ while the
second is based on a simulation run at Los Alamos Na-
tional Laboratory (LANL) using the Hashed-Oct-Tree
code (Warren 1994). This simulation tracks the evolu-
tion of 3843 particles with 6.67×1011M⊙ in a box of side
length 768 Mpc h−1, and is referred to as the “higher
resolution” simulation in what follows. Both simula-
tions have cosmological parameters Ωm = 0.3, ΩΛ = 0.7,
h = 0.7 and σ8 = 0.9.

In addition to the galaxy list we have a list of dark mat-
ter halos, defined using a spherical over-density cluster
finder (e.g. Evrard et al. 2002). By running the cluster
finding algorithm on the mock catalogs, we connect clus-
ters detected “observationally” from their galaxy content
with simulated dark matter halos in a direct way.

2.3. Velocity Bias

Given that there is still substantial uncertainty in the
amount of velocity bias for various galaxy samples, we
must be careful to avoid velocity bias dependent conclu-
sions. The mock catalogs with which we are comparing
do not explicitly include velocity bias. Fortunately, we
will only incur errors due to velocity bias when we es-
timate masses or directly compare velocity dispersions
measured in the mock catalogs to those measured in the
data. Therefore in most of our analysis, velocity bias
has no effect. Where it is relevant, we choose to leave
velocity bias as a free parameter because of its current
observational and theoretical uncertainties.

Observational uncertainties in velocity bias arise sim-
ply because it is exceedingly difficult to measure. To
make such a measurement, one usually requires two in-
dependent determinations of mass, one of them based on
dynamical measurements, each subject to systematic and
random errors (e.g. Carlberg 1994). Another technique
was recently used by Rines et al. (2006), namely con-
straining the velocity bias by measuring the virial mass
function and comparing it to other independent cosmo-
logical constraints. Their analysis resulted in a bias of
bv ∼ 1.1 − 1.3. Unfortunately, this technique folds in
systematic errors from the other analyses.

In the past, theoretical predictions of velocity bias
were affected by numerical over-merging and low reso-
lution (e.g. Frenk et al. 1996; Ghigna et al. 2000). Most
estimates of velocity bias based on high-resolution
N-body simulations have given bv ∼ 1.0 − 1.3
(Coĺın et al. 2000; Ghigna et al. 2000; Diemand et al.
2004; Faltenbacher et al. 2005), partially depending on
the mass regime studied. Recent theoretical work has

shown that differing methods of subhalo selection in N-
body simulations change the derived velocity bias. In
particular, Faltenbacher & Diemand (2006) have shown
that when subhalos are selected by their properties
at the time of accretion onto their hosts (a model
which also matches the two-point clustering better, see
Conroy et al. 2006), they are consistent with being un-
biased with respect to the dark matter. Still, under-
standing velocity bias with confidence will require more
observational and theoretical study. As a result, we leave
velocity bias as a free parameter where assumptions are
required.

3. THE MAXBCG CLUSTER CATALOG

3.1. The maxBCG Cluster Detection Algorithm

The maxBCG cluster detection algorithm identifies
clusters as significant over-densities in position-color
space (Koester et al. 2007a,b). It relies on the fact
that massive clusters are dominated by bright, red,
passively-evolving ellipticals, known as the red-sequence
(Gladders & Yee 2000). In addition, it exploits the spa-
tial clustering of red-sequence and the presence of a cD-
like brightest cluster galaxy (BCG). The brightest of the
red-sequence galaxies form a color–magnitude relation,
the E/S0 ridgeline (Annis et al. 1999), whose color is a
strong function of redshift. Thus, in addition to reliably
detecting clusters, maxBCG also returns accurate pho-
tometric redshifts. The details of the algorithm can be
found in Koester et al. (2007b).

The primary parameter returned by the maxBCG clus-
ter detection algorithm is N200

gal , the number of E/SO

ridgeline galaxies dimmer than the BCG, within +/- 0.02
in redshift (as estimated by the algorithm), and within
a scale radius RN

200 (Hansen et al. 2005):

RN
200 = (140 h−1kpc) × N0.55

gal (1)

where Ngal is the number of E/SO ridgeline galaxies
dimmer than the BCG, within +/- 0.02 in redshift, and
within 1 h−1Mpc.

The value of RN
200 is defined by Hansen et al. (2005)

as the radius at which the galaxy number density of the
cluster is 200Ω−1

m times the mean galaxy space density.
This radius may not be physically equivalent to the stan-
dard R200 defined as the radius in which the total matter
density of the cluster is 200 times the critical density.

In the work below, we also use the results of Sheldon et
al. (2007, in preparation) and Johnston et al. (2007, in
preparation) who calculate R200 from weak lensing anal-
ysis on stacked maxBCG clusters. Johnston et al. (2007)
show that these weak lensing measurements can be non-
parametrically inverted to obtain three-dimensional, av-
erage mass profiles. In the context of the halo model,
these mass profiles are fit with a one- and two-halo term.
The best fit NFW profile (Navarro et al. 1997), which
comprises the one-halo term, is used to measure R200.
Several systematic errors are accounted for including
non-linear shear, cluster mis-centering, and the contri-
bution of the BCG light (modeled as a point mass).

It is notable that the redshift estimates for the
maxBCG cluster sample are quite good. They can be
tested with SDSS data by comparing them to spectro-
scopic redshifts for a large number of BCG galaxies ob-
tained as part of the SDSS itself. The photometric red-
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shift errors are a function of cluster richness, varying
from δz = 0.02 for systems of a few galaxies to δz ≤ 0.01
for rich clusters (Koester et al. 2007a).

Koester et al. (2007a,b) estimate the completeness
(fraction of real dark matter halos identified) as a func-
tion of halo mass and purity (fraction of clusters iden-
tified which are real dark matter halos) as a function of
N200

gal by running the detection algorithm defined above on
the ADDGALS simulations. The maxBCG cluster cat-
alog is demonstrated to have a completeness of greater
than 90% for dark matter halos above a mass of 2× 1014

M⊙, and a purity of greater than 90% for detected clus-
ters with observed richness greater than N200

gal =10. The
selection function has been further characterized for use
in cosmological constraints by Rozo et al. (2007a).

We finally note that clusters at lower redshift are more
easily identified directly from the spectroscopic sample
(e.g. the C4 catalog, Miller et al. 2005 or the catalog of
Berlind et al. 2006), but are limited in number due to
the high flux limit of the spectroscopic sample. Clusters
at redshifts higher than 0.3 can be identified easily in
SDSS photometric data, but measurement of their rich-
nesses, locations, and redshifts in a uniform way becomes
increasingly difficult as their member galaxies become
faint. Future studies similar to the one described in this
paper will be possible as the maxBCG method is pushed
to higher redshift and higher redshift spectroscopy is ob-
tained.

3.2. The Cluster Catalog

The published catalog (Koester et al. 2007a) includes
a total of 13,823 clusters from ∼ 7500 square degrees
of the SDSS, with 0.1 < z < 0.3 and richnesses greater
than N200

gal =10. For this study, we extend the range of this

catalog to 0.05 < z < 0.31 and N200
gal≥ 3. The lower red-

shift bound allows us to include more of the SDSS spec-
troscopy, which peaks in density around z ∼ 0.1. The
extended catalog used in this study sacrifices the well-
understood selection function of the maxBCG clusters
for the extra spectroscopic coverage and thus improved
statistics. The lower richness cut additionally cut allows
us to probe a wider range of cluster and group masses.
This larger sample has a total of 195,414 clusters and
groups.

The selection function has only been very well charac-
terized (by Koester et al. 2007a,b and Rozo et al. 2007a)
for the maxBCG catalog presented in Koester et al.
(2007a). The broader redshift range and lower richness
limit considered for this study are not encompassed in the
preceding studies. This is primarily because we expect
the color selection may produce less complete samples for
low richness; since the red fraction in clusters and groups
decreases with decreasing mass, maxBCG may be biased
against the bluest low mass groups.

Requiring sufficient spectroscopic coverage for each
cluster, defined in §4.1 in the context of the construc-
tion of the BCG–galaxy velocity correlation function,
significantly restricts the sample of clusters studied here
due to the limited spectroscopic coverage of the SDSS
in comparison with its photometric coverage. Most of
the maxBCG clusters above z ≈ 0.2 contribute rela-
tively little to the BGVCF. The final cluster sample in-
cludes only 12,253 clusters. A total of 57,298 of the more

than 640,000 SDSS DR5 galaxy redshifts are used in this
study.

4. THE VELOCITY DISPERSION–RICHNESS RELATION

To compare cluster catalogs derived from data to theo-
retical predictions of the cluster mass function, we must
examine cluster observables which are related to mass.
For individual clusters, the primary mass indicators we
have for this photometrically-selected catalog are based
on observations of galaxy content. Some of the observ-
able parameters include Ngal, total optical luminosity
Lopt, and comparable parameters measured within ob-
servationally scaled radii N200

gal and L200
opt . To understand

the relationship between these various richness measures
and cluster mass, we can refer to several observables more
directly connected to mass: the dynamics of galaxies, X-
ray emission, and weak lensing distortions the clusters
produce in the images of background galaxies. In this
work we concentrate on the extraction of dynamical in-
formation from the maxBCG cluster catalog. Weak lens-
ing measurements of this cluster catalog are described by
Sheldon et al. (2007, in preparation) and Johnston et al.
(2007, in preparation). An analysis of the average X-ray
emission by maxBCG clusters is in preparation (Rykoff
et al. 2007). Preliminary cosmological constraints from
this catalog, based only on cluster counts, have been
presented by Rozo et al. (2007b); these will be extended
with the additon of these various mass estimators.

4.1. Extracting Dynamical Information from Clusters:
the BCG–Galaxy Velocity Correlation Function

Using the SDSS spectroscopic catalog, we can learn
about the dynamics of the maxBCG galaxy clusters. For
this sample, drawn from a redshift range from 0.05 to
0.31, the spectroscopic coverage of cluster members is
generally too sparse to allow for direct measurement of
individual cluster velocity dispersions. We instead focus
here on the measurement of the mean motions of galax-
ies as a function of cluster richness. We study these mo-
tions by first constructing the BCG–galaxy velocity cor-
relation function, ξ(δv, r, Pcl, Pgal), hereafter, the BCG–
galaxy velocity correlation function, BGVCF.

To construct the BGVCF, we identify those clusters for
which a BCG spectroscopic redshift has been measured.
We then search for other galaxies with spectroscopic red-
shifts contained within a cylinder in redshift-projected
separation space which is ±7, 000 km s−1deep and has
a radius of one R200, which varies as a function of N200

gal ,

as measured by Johnston et al. (2007, in preparation).
For each such spectroscopic neighbor we form a “pair”,
recording the velocity separation of the pair, δv, their
projected separation at the BCG redshift, r, informa-
tion about the properties of each galaxy (the BCG and
its neighbor) Pgal, and information about the cluster in
which the BCG resides Pcl. This pair structure contains
the observational information relevant to the BGVCF.

The quantities Pgal and Pcl will change depending on
the context in which we are considering the BGVCF.
Some examples of Pcl include Ngal, Lopt, N200

gal , L200
opt , lo-

cal environmental density, and R200. Examples of Pgal

include the magnitude differences between members and
the BCG, BCG i-band luminosity, and stellar velocity
dispersion. The mean of δv is consistent with zero so
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Fig. 1.— The projected separation and velocity separation for
the pairs of galaxies in clusters with N200

gal ≥ 15 (right) and N200

gal

≤ 5 (left). There is a clear change in the BGVCF with N200

gal .

that the BGVCF is independent of the parity of δv. In
Figure 1 we show the BGVCF of the catalog in two bins
of N200

gal , one with N200
gal < 5 (left panel) and one with N200

gal

> 15 (right panel). The structure of the BGVCF clearly
changes with richness.

When we stack clusters to measure their velocity dis-
persion as described below, the statistical properties of
our sampling of the BGVCF determine the errors in
our measurements. Figures 2(a)-(d) show the number
of pairs in the BGVCF per cluster as a function of N200

gal

plotted for the entire BGVCF and in three redshift bins.
As the redshift of the bins increases, we can see that
the number of spectroscopic pairs becomes less reflective
of the value of N200

gal for the cluster. Clusters at lower
redshift tend to have more pairs, as expected. Figure 2
shows that if we want to measure the velocity dispersion
of individual clusters, we are limited to low redshift and
high richness because only these clusters are sufficiently
well sampled by the SDSS spectroscopic data.

4.2. Characterizing the BGVCF of Stacked Clusters

In this work, we are primarily concerned with the mag-
nitude of the velocity dispersion and its scatter at fixed
richness, as well as its dependence on the properties of

Fig. 2.— The number of spectroscopic pairs in the BGVCF per
cluster as a function of redshift. The redshift ranges for each panel
are indicated; the first panel includes the entire catalog. Clusters
with lower redshifts and higher richness are better sampled by the
spectroscopic survey. The points in this diagram are displaced
randomly from their integral values (i.e. {1, 2, ...}) so that the true
density can be seen.

clusters and their galaxies. To greatly simplify our analy-
sis, we now integrate the BGVCF radially to produce the
pairwise velocity difference histogram (PVD histogram).
Strictly speaking, we do not produce a true PVD his-
togram because the only pairs we consider are those be-
tween BCGs and non-BCGs around the same cluster (i.e.
all other galaxies in the BGVCF around each cluster).
We do not include non-BCG to non-BCG pairs.

Ideally, if every cluster had a properly selected BCG
and all BCGs were at rest with respect to the center-of-
mass of the cluster, our measurements of the mean veloc-
ity dispersion would be unbiased with respect to the true
center-of-mass velocity dispersion. Unfortunately, these
simplifying assumptions are not likely to be true. In
particular it has been found that BCGs move on average
with ∼ 25% of the cluster’s velocity dispersion, but that
at higher mass BCG movement becomes more significant
(e.g. van den Bosch et al. 2005). In §5.2.1 we show that
a correction must be applied to our mean velocity dis-
persions due to centering on the BCG (hereafter called
BCG bias), but that we cannot distinguish between im-
properly selected BCGs and BCG movement. However,
we will still focus on the BCG in the measurements of the
BGVCF because it is a natural center for the cluster in
the context of the maxBCG cluster detection algorithm.

Having decided to concentrate on the PVD histogram,
we now motivate the construction of a fitting algo-
rithm for the PVD histogram. Previous work by
McKay et al. (2002), Prada et al. (2003), and others
(Brainerd & Specian 2003; van den Bosch et al. 2004;
Conroy et al. 2005, 2007) has focused on measuring the
halo mass of isolated galaxies by using dynamical mea-
surements. McKay et al. (2002) found the velocity dis-
persion around these galaxies by stacking them in lumi-
nosity bins and fitting a Gaussian curve plus a constant,
representing the constant interloper background, to the
stacked PVD histogram. In this method, the standard
deviation of the fit Gaussian curve is then taken as an
estimate of the mean value of the velocity dispersion of
the stacked groups.

The algorithm presented above is insufficient for our
purposes for the following reason. The PVD histogram of
stacked galaxy clusters is shown in Figure 3; it is clearly
non-Gaussian. Although the width of a single Gaussian
curve likely still provides some information about the
typical dispersion of the sample, it cannot adequately
capture the information contained in the non-Gaussian
shape of the PVD histogram. As we will show below
in §5, although the PVD histogram for a stack of similar
velocity dispersion clusters is expected to be nearly Gaus-
sian, there are multiple sources of non-Gaussianity that
can contribute to the non-Gaussian shape of the stacked
PVD histograms. To adequately characterize this non-
Gaussianity, one of the primary goals of this paper, we
must use a better fitting algorithm to characterize the
PVD histograms.

In this work we will mention a variety of different meth-
ods of fitting the PVD histograms. We give their names
and definitions here and follow with a full description of
the primary method used, 2GAUSS. The various meth-
ods are:

1GAUSS: This is the method used for isolated galax-
ies as discussed above. We do not use it because,
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Fig. 3.— PVD histograms in four N200

gal bins. The EM algorithm fits are shown along with the Poisson errors of the histograms. Notice

the change in the degree of non-Gaussianity of the lower N200

gal bins compared to the higher N200

gal bins. As richness increases, the stacked

PVD histogram becomes more Gaussian. Section 5 shows that this decrease indicates a decrease the width of the lognormal distribution
of velocity dispersions in each bin. The deviations of the fits near the centers of the distributions are only at the two-sigma level and are
highly dependent on the bin size used to produce the cluster-weighted PVD histograms.

as described in §4.2.2, it systematically underesti-
mates the second moment of the PVD histogram
by ∼ 8%.

2GAUSS: This method is the one motivated and de-
scribed in detail below. It is the primary method
used throughout the rest of the paper. Simply, it
fits the PVD histogram with two Gaussians and
a constant background term, but with a special
weighting by cluster and not by galaxy (see §5).

NGAUSS: This is a generalized version of the 2GAUSS
method with N Gaussians instead of two (i.e. a
three Gaussian fit will be denoted by 3GAUSS).
Although it fits the PVD histogram as well as the
2GAUSS method, it is more computationally ex-
pensive, and adds parameter degeneracies without
substantially improving the quality of the fit.

NONPAR: There are several possible methods for us-
ing non-parametric fits to the PVD histogram (e.g.
kernel density estimators). We do not use them
because they do not naturally account for the
constant interloper background in the PVD his-
togram. For a good review of these techniques see
Wasserman et al. (2001).

BISIGMA: This method is not used for the PVD his-
tograms of stacked clusters, but is used for the PVD
histograms of individual clusters. The biweight is

a robust estimator of the standard deviation that
is appropriate for use with samples of points which
contain interlopers (Beers et al. 1990). See §4.3 for
a description of its use in this paper.

BAYMIX: This method is a Bayesian or maximum like-
lihood method that can be used in the context of
the model of the scatter in velocity dispersion at
fixed richness. This method will be described fully
in §5, but we do not use it in this paper because
we have found it to be unstable.

We will refer to these methods by their names given
above. Although we mention these other methods,
for deriving the main results of the paper we use the
2GAUSS method for stacked cluster samples (4.2.1) and
the BISIGMA method for individual clusters (§4.3).

4.2.1. Fitting the PVD Histogram

In order to more fully capture the shape of the PVD
histogram of stacked clusters, avoid systematic fitting er-
rors, and avoid fitting degeneracies, we would ideally use
the NONPAR method to fit the PVD histogram. In this
way we would impose no particular form on the PVD his-
togram, allowing us to extract its true shape with as few
assumptions as possible. However, this method does not
naturally account for the interloper background term of
the PVD histogram which can be easily fit by a constant
(Wojtak et al. 2006).
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In the pursuit of simplicity, we compromise by fitting
the PVD histogram of stacked clusters with two Gaus-
sian curves plus a constant background term. The means
of the two Gaussians are free parameters but are fixed to
be equal. In all cases the mean is consistent with zero.
The two Gaussian curves allow us to more fully capture
the shape of the PVD histogram, while still accounting
for the interloper background of the BGVCF with the
constant term. It could be that the shape of the PVD
histogram cannot be satisfactorily accounted for by two
Gaussians. We show in §4.2.2 that two Gaussians are suf-
ficient to describe the shape of PVD histogram. Using
the 2GAUSS method instead of the NGAUSS method
avoids expensive computations and limits the number of
parameters in the fitting procedure to six, avoiding de-
generacies in the fit parameters due to limited statistics.

In the interest of fitting stability and ease of use (but
sacrificing speed), we use the expectation maximiza-
tion algorithm (EM) for one dimensional Gaussian mix-
tures to fit the PVD histogram (Dempster et al. 1977;
Connolly et al. 2000). In Appendix A, we re-derive
the EM algorithm for one dimensional Gaussian mix-
tures such that it assigns every Gaussian the same mean
and weights groups of galaxies, not individual galaxies,
evenly. This last step is important in the context of the
model of the distribution of velocity dispersions at fixed
N200

gal discussed in §5. To account for our velocity errors,

we use the results of Connolly et al. (2000) and subtract
in quadrature the 30 km s−1redshift error from the stan-
dard deviation of each fit Gaussian.

We have described our measurements in the context
of the PVD histogram and not the BGVCF. However,
these two view points in our case are completely equiva-
lent. Wojtak et al. (2006) have shown that galaxies un-
correlated with the cluster in PVD histograms (i.e. in-
terlopers) form a constant background. Thus by fitting
a constant term to the PVD histogram, we are in effect
subtracting out the uncorrelated pairs statistically to re-
tain the BGVCF.

4.2.2. Tests of the 2GAUSS Fitting Algorithm

In order to measure the moments of the PVD his-
togram as a function of richness, the data is first binned
logarithmically in N200

gal and then the 2GAUSS method is
applied to each bin. The results of our fitting on four bins
of N200

gal are shown in Figure 3. In all cases, the model
provides a reasonable fit to the data. We defer a full
discussion of the fitting results to §5 where we show how
to compute the mean velocity dispersion and scatter in
velocity dispersion at fixed N200

gal using the results of the
2GAUSS fitting algorithm, including corrections for im-
properly selected BCG centers and/or BCG movement.

To ensure that the use of the 2GAUSS method does
not bias our fits in any way, we repeated them using
the 1GAUSS, 3GAUSS, and 4GAUSS methods. We find
that while the measured second moment for the 1GAUSS
fits are consistently lower than those measured from the
2GAUSS fits by approximately 8%, both the second and
fourth moments measured by the 2GAUSS, 3GAUSS,
and 4GAUSS fits are the same to within a few percent.
Therefore we conclude that the fits have converged and
that two Gaussians plus a constant are sufficient to cap-
ture the overall shape of the PVD histogram. The fitting

errors are determined using bootstrap resampling over
the clusters in each bin.

The results are not dependent on the radial or velocity
scale used to construct the BGVCF and thus the PVD
histogram. We repeated the 2GAUSS fits using 0.75R200,
1.0R200, 1.25R200, and 1.5R200 projected radial cuts as
well as ±10000 km s−1, ±5σ scaled, and ±10σ scaled
apertures in velocity space. We found no significant dif-
ferences in the fits using each of the various cuts, with
the exception of the value of the background normaliza-
tion, which will change when a larger aperture allows
more background to be included in the PVD histogram.
The scaled apertures were made by first determining the
relation in a fixed aperture, and then rescaling the aper-
ture according to this relation. For example, in a bin of
N200

gal from 18 to 20, the velocity dispersion is ∼ 500 km

s−1as measured in a ±7000 km s−1fixed aperture. To
make the five sigma scaled aperture measurements, we
used an aperture in this N200

gal bin of ±5 × 500 = ±2500

km s−1.

4.3. Estimating Individual Cluster Velocity Dispersions

To measure the velocity dispersion of individual clus-
ters in the SDSS, we select all clusters that have at least
ten redshifts in its PVD histogram within three sigma
measured by the mean velocity-dispersion–N200

gal relation
calculated in §5. Of the 12,253 clusters represented in the
BGVCF, only 634 meet the above requirement. We then
apply the BISIGMA method to calculate the velocity dis-
persion which uses the biweight estimator (Beers et al.
1990). The resulting velocity dispersions are plotted in
Figure 4. The BCG bias manifests itself here in that the
ICVDs show a downward bias with respect to the mean
relation calculated in §5, but not corrected for BCG bias.
We will correct for this bias in §5.2.1. The two relations
do however agree to within one- to two-sigma (computed
through jackknife resampling with the biweight). Using
these individual cluster velocity dispersions (ICVDs), we
can directly compute the scatter in the velocity disper-
sion at fixed N200

gal . We will compare this computation
with the estimate based on measuring non-Gaussianity
in the stacked sample in §5.

5. MEASURING SCATTER IN THE VELOCITY
DISPERSION–RICHNESS RELATION

5.1. Mass Mixing Model

The subject of non-Gaussianity of pair-wise velocity
difference histograms has been debated extensively in
the literature. Diaferio & Geller (1996) have shown that
non-Gaussianity in the total PVD histogram for dark
matter halos arises from two sources: stacking halos of
different masses according to the mass function, and in-
trinsic non-Gaussianity in the PVD histogram due to
substructure, secondary infall, and dissipation of orbital
kinetic energy into subhalo internal degrees of freedom.
However for galaxy clusters, they conclude that the PVD
histogram of an individual galaxy cluster that is virial-
ized is well approximated by a Gaussian.

Sheth (1996) independently reached the same conclu-
sions but did not consider any intrinsic non-Gaussianity,
just the effect of stacking halos of different masses ac-
cording to the mass function. Sheth & Diaferio (2001)
gave a more complete synthesis of non-Gaussianity in
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Fig. 4.— The individual cluster velocity dispersions for the en-
tire data set. The dispersions were computed using the BISIGMA
method on only those clusters with more than ten BGVCF pairs
within three-sigma of the BCG (calculated using the mean velocity
dispersion at the BCG’s N200

gal ). The dashed line is the geometric

mean of the velocity dispersions calculated in the context of the
mixing model (§5) without a correction for BCG bias and the solid
line is the fit to all velocity dispersions of the individual clusters.
The error bars on the ICVDs are not shown for clarity. The two
relations (dashed and solid) agree with each other within one- to
two-sigma, but the average bias between them is a real effect.

PVD histograms, generalizing the formalism to include
the effect of particle tracer type (halos versus galaxies
versus dark matter particles) and extensively considering
the effects of local environment. In all three treatments,
non-Gaussianity is shown to arise from the stacking of in-
dividual PVD histograms which are Gaussian or nearly
Gaussian and have some intrinsic distribution of widths.
In this paper we use the term “mass mixing” to refer
only to non-Gaussianity arising through this process.

It should be noted that observing non-Gaussianity in
PVD histograms stacked by richness is equivalent to
saying that the richness verses velocity dispersion re-
lation has intrinsic scatter (assuming that the stacked
PVD histogram of set of similar velocity dispersion clus-
ters has intrinsic Gaussianity). Intrinsic scatter in the
velocity-dispersion–richness relation was reported earlier
by Mazure et al. (1996) for a volume-limited sample of
80 literature-selected clusters with at least 10 redshifts
each. Here we seek to quantify this scatter as a func-
tion of richness by measuring the non-Gaussianity in the
PVD histogram.

For individual galaxy clusters, theoretical work has
been done by Iguchi et al. (2005) showing that vio-
lent gravitational collapse in an N-body system may
lead to a non-Gaussian velocity distribution. However,
Faltenbacher & Diemand (2006) have shown that the ve-
locity distribution of subhalos in a dissipationless N-body
simulation is Gaussian (Maxwellian in three dimensions)
and shows little bias compared to the diffuse dark mat-
ter, if the subhalos are selected by their mass when they
enter the host halo and not the present-day mass. Fi-
nally, Sheth & Diaferio (2001) caution against conclud-
ing that the three-dimensional velocity distribution of a
galaxy cluster is Maxwellian even if one component is
found to be approximately Gaussian. They show that
for a slightly non-Maxwellian three-dimensional distri-
bution, departures of the one-dimensional distribution
from a Gaussian are much smaller than departures of
the three-dimensional distribution from a Maxwellian.

Observationally, the PVD histogram of individual
galaxy clusters has been shown to be non-Gaussian in
the presence of substructure (e.g. Cortese et al. 2004;
Halliday et al. 2004; Girardi et al. 2005). Conversely,
Girardi et al. (1993) observed 79 galaxy clusters with at
least 30 redshifts each and found no systematic devia-
tions from Gaussianity (although 14 were found to be
mildly non-Gaussian at the three-sigma level). Caldwell
(1987) showed that once recently-accreted galaxies are
removed from the sample of redshifts from the Fornax
cluster, the PVD histogram becomes Gaussian.

Unfortunately, due to the low number of galaxy red-
shifts available for a given cluster as shown in §4.1, we
must make some assumption about the shape of the PVD
histogram for a set of stacked clusters of velocity disper-
sion between σ and σ + dσ in order to proceed with con-
structing a mass mixing model. If every cluster were
sampled sufficiently, the scatter in velocity dispersion
at a given value of N200

gal could be directly computed by
measuring the velocity dispersions of individual clusters.
Since this is not the case, in order to proceed we assume
that for a set of stacked clusters of velocity dispersion
between σ and σ + dσ, the PVD histogram is Gaussian.
This assumption is well justified and is equivalent to the
assumption that a large enough portion of the clusters
in our catalog are sufficiently relaxed, virialized systems
at their centers, so that when we stack them, any asym-
metries or substructure are averaged out.

However, we will still be sensitive to substructure
around the BCG. In fact, we may even be more sensitive
to substructure around the BCG since we are directly
stacking clusters on the BCG. Using the ADDGALS
mock galaxy catalogs, we find that when binning dark
matter halos with galaxies by both velocity dispersion
and mass, the resulting stacked PVD histograms are
Gaussian. This result gives us further confidence that
the above assumption is reasonable, but it is still possi-
ble that it is sensitive either to the BCG placement or to
the galaxy selection of the mock catalogs.

Under the assumption of Gaussianity of the PVD his-
togram for a stacked set of similar velocity dispersion
clusters, the non-Gaussianity in the stacked histograms
can be entirely attributed to the distribution of the ve-
locity dispersions (or equivalently mass) of the stacked
clusters. The goal of our analysis is then to extract the
distribution of velocity dispersions for a given PVD his-
togram by measuring its deviation from Gaussianity.

We can now proceed in two distinct ways. First, by
writing the PVD histogram as a convolution of a Gaus-
sian curve of width σ for each stacked set of similar veloc-
ity dispersion clusters, with some distribution of velocity
dispersions in the stack, we could numerically deconvolve
this Gaussian out of the PVD histogram to produce the
distribution of velocity dispersions in the stack. Repeat-
ing this procedure in various bins on different observ-
ables, we could then have knowledge of the scatter in
velocity dispersion as a function of these observables.

Second, by taking a more model dependent approach,
we could make an educated guess of the distribution of σ
as a function of a given set of parameters, and then per-
form the convolution to predict the shape of the PVD
histogram. By matching the predictions with the obser-
vations through adjusting the set of parameters, we could
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then have a parameterized model of the entire distribu-
tion.

Based on the results shown below in §6, it is appar-
ent that the only parameter upon which σ varies sig-
nificantly, neglecting the modest redshift dependence, is
N200

gal . Thus we choose a parametric model that is a func-

tion of N200
gal only. The dependence of mass mixing on any

secondary parameters (e.g. the BCG i-band luminosity)
can then be explored through first binning on N200

gal and
then splitting on these secondary parameters, because
their effects are small (see §6).

The ADDGALS mock catalogs show the scatter about
the mean of the logarithm of the velocity dispersion mea-
sured from the dark matter for a given value of Ngal to
be approximately Gaussian for dark matter halos. Us-
ing this distribution as our educated guess, we apply this
model to the data in logarithmic bins of N200

gal . We avoid
the deconvolution due to its inherent numerical difficulty.
Using the mock catalogs, we can test our method of de-
termining the parameters of this model as a function of
N200

gal by applying our analysis to clusters identified in the
mocks and then matching those clusters to halos in order
to determine their true velocity dispersions.

To summarize, there are two and possibly even three
sources of non-Gaussianity in our PVD histograms (sim-
ilar to those discussed in Sheth (1996), Diaferio & Geller
(1996), and Sheth & Diaferio (2001) discussed above):
(1) intrinsic non-Gaussianity in the PVD histogram for
an individual galaxy cluster, (2) the range of velocity
dispersions that contribute to the PVD histogram for
a given value of N200

gal (mass mixing), and (3) stacking

of clusters with different values of N200
gal in the same

PVD histogram. We handle the last two sources of non-
Gaussianity jointly through the model below and ignore
the first, which is expected to be small, both because
most clusters are relaxed, virialized systems and many
are stacked together here.

As a final note, by binning logarithmically in N200
gal and

then measuring the mass mixing, we only approximately
account for non-Gaussianity arising from clusters with
different richnesses in the same bin. By avoiding binning
all together and finding the model parameters through
a maximum likelihood approach, we could remedy this
issue. This approach is the BAYMIX method. However,
we have found this process to be computationally expen-
sive and slightly unstable due the integral in equation 3
below. Its only true advantage is in the computation of
the errors in the parameters and their covariances. Us-
ing a maximum likelihood approach, one could calculate
the full covariance matrix of the parameters introduced
below. As will be shown below, binning in N200

gal and then
measuring the mass mixing will allow us to only easily
find the covariance matrices of the parameters in sets of
two. Since we are not significantly concerned with the
exact form of these errors or the covariances of the pa-
rameters, we choose to bin for simplicity.

Future analysis of this sort with PVD histograms will
hopefully take a less model-dependent approach by de-
convolving a Gaussian directly from the stacked PVD
histogram. This will allow for a direct confirmation of
the distribution of velocity dispersions at fixed richness.
Also, a direct deconvolution would allow one to make

mass mixing measurements of stacks of clusters binned
on any observable. Although the lognormal form as-
sumed here may in fact have wider applicability, we can
only confirm its use for clusters stacked by richness.

5.2. Results Using The Mass Mixing Model

We can write the shape of the non-background part of
the stacked cluster-weighted PVD histogram, P (v), as

P (v) =

∫

p(v, σ)dσ =

∫

p(v|σ)p(σ)dσ (2)

where v is the velocity separation value and σ is the
Gaussian width of a stacked set of similar velocity dis-
persion clusters. Using the assumptions from the previ-
ous discussion, we let p(v|σ) be a Gaussian of width σ
with mean zero, and p(σ) be a lognormal distribution.
Performing the convolution, we get that P (v) is given
by

P (v) =
∫ ∞

0

1

σ22πS
exp

(

− v2

2σ2
− (ln σ− < lnσ>)2

2S2

)

dσ (3)

where < lnσ > is the geometric mean of σ and S is the
standard deviation of lnσ. We note that the quantity
100 × S is the percent scatter in σ. The second and
fourth moments of this PVD distribution, µ(2) and µ(4)

are given by

µ(2) = exp (2 < lnσ> +2S2) (4)

and
µ(4) = 3 exp (4 < lnσ> +8S2) . (5)

For convenience we define the normalized kurtosis to be

γ2
N =

µ(4)

3µ2
(2)

= exp4S2 . (6)

Note that the odd moments of this distribution are ex-
pected to vanish, and in fact the data is consistent with
both the first and third moments being zero. Equation
4 shows us why the velocity dispersions derived directly
from the second moment of the PVD histogram must be
corrected. The factor of exp S2 artificially increases the
velocity dispersions. In practice this effect is at most
∼ 20% at low richness and declines to ∼ 5% for the most
massive clusters in our sample.

To complete our model, we need a term corresponding
to the background of the PVD histogram. This back-
ground has two parts, an uncorrelated interloper compo-
nent and an infall component (i.e. galaxies which are not
in virial equilibrium but are bound to the cluster in the
infall region). Wojtak et al. (2006) have shown that the
uncorrelated background is a constant in the PVD his-
togram, while van den Bosch et al. (2004) have shown
that the infall component is not constant and forms a
wider width component for PVD histograms around iso-
lated galaxies. We ignore the possible infall components
in our PVD histograms but note that they may bias the
widths of our lognormal distributions high. Investigation
of this issue in the mock catalogs shows that the result
of van den Bosch et al. (2004) holds for galaxy clusters
as well. Although we do not explore this here, it may be
possible to reduce the mass mixing signal from infalling



10 BECKER ET AL.

galaxies by selecting galaxies by color (i.e. red galaxies
only or just maxBCG cluster members), which preferen-
tially selects galaxies near the centers of the clusters.

Accounting for the constant interloper background, the
full model of the cluster-weighted PVD histogram, P(v),
can now be written as,

P(v) =
p

2L
+ (1 − p)P (v) (7)

where L is the maximum allowed separation in velocity
between the BCG and the cluster members, set to 7000
km s−1, and p is a weighting factor that sets the back-
ground level in the PVD histogram. Here we ignore the
small error in the normalization due to integrating P(v)
over v from −∞ to ∞ instead of −L to L. As long as
L is sufficiently large, say on the order of 4 exp(< ln σ>)
for a given PVD histogram, this error is small.

Now, it can be seen why the stacked PVD histogram
must be weighted by cluster instead of by galaxy. In
equation 3, equal weight is assigned to each cluster be-
cause p(v|σ) is a Gaussian normalized to integrate to
unity. In order to predict the pair-weighted PVD his-
togram correctly, we would have to predict the total
number of BGVCF pairs, both cluster and background,
as function of N200

gal and include this total in the integral

and the background term. (The factors of p and 1 − p
take care of the relative weighting of the background rel-
ative to cluster, assuming this weighting is the same for
every cluster. This may not be true, in which case the
factors of p and 1 − p would have to be included in the
integral as well.) This is a significant problem due to
its dependence on redshift, local environment, and the
selection function of the survey.

By using the cluster-weighted PVD histogram fit by
the EM algorithm derived in Appendix A (i.e. the
2GAUSS method), we can avoid this issue. This weight-
ing could be included in the BAYMIX method as well.
We choose to use the 2GAUSS method because it is more
stable and less computationally expensive. In practice
the extra weighting factors do not change our results
drastically, indicating that most clusters already get ap-
proximately equivalent weight even in the pair-weighted
PVD histogram. However, for completeness we include
the weighting factor. Note that two Gaussians is the the
fewest number of Gaussians a distribution could be com-
posed of and have a normalized kurtosis different from
unity (the normalized kurtosis of a single Gaussian dis-
tribution is unity). According to equation 6, then, if we
measure a normalized kurtosis of unity for any of our
bins, mass mixing in that bin (i.e. S) will be zero.

The quantities < lnσ>, S2, and p are measured by bin-
ning the data in N200

gal and applying the 2GAUSS method
as described earlier. This method outputs the constant
background level p automatically. The normalized kur-
tosis is calculated as

γ2
mes =

p1(σ1)
4 + p2(σ2)

4

(p1(σ1)2 + p2(σ2)2)
2 (8)

and the second moment is calculated as

µmes
(2) =

p1(σ1)
2 + p2(σ2)

2

p1 + p2
, (9)

where {p1, p2} and {σ1, σ2} are the normalizations and

TABLE 1
MaxBCG mass mixing model fit parameters.

Parameter Value

mean-normalization, A 6.17 ± 0.04
mean-slope, B 0.436 ± 0.015

scatter-normalization, C 0.096 ± 0.014
scatter-slope, D −0.0241 ± 0.0050

background-normalization, E −0.980 ± 0.052
background-slope, F −0.00154 ± 0.00018

standard deviations calculated for the two Gaussians in
the 2GAUSS PVD histogram fit. See Appendix A for
more details. Although equation 8 is not properly nor-
malized, we find that the bias correction computed in
Appendix B is small, and thus equation 8 is a good esti-
mator of the normalized kurtosis.

Using equations 4, 6, 8, and 9, we solve for the pa-
rameters < lnσ > and S2. The background normaliza-
tion p and the normalization and scatter in the velocity-
dispersion–richness relation are all modeled as power
laws, which provides a good description of the relations
in both the data and the simulations:

< lnσ>= A + B ln N200
gal /25 (10)

S2 = C + D ln N200
gal /25 . (11)

ln p = E + F exp (< lnσ>) (12)

The fit of the measured parameters < lnσ > and S2 to
the above relations for the maxBCG cluster sample are
shown in Figure 5. The parameters A, B, C, D, E, and F
are given in Table 1 and the mass mixing model values for
each bin are given in Table 2. The mean relation plotted
in this figure is corrected for BCG bias due to improp-
erly selected BCGs and/or BCG movement as discussed
in §5.2.1. The errors for our data points are derived from
the bootstrap errors employed in the 2GAUSS method.
Note that we only have knowledge of the full error dis-
tributions of the parameters in sets of two, and are thus
neglecting covariance between, for example, parameters
A and C or B and C, etc. The BAYMIX method would
allow for each of the three relations to be fit simultane-
ously, giving full covariances between the parameters.

5.2.1. BCG Bias in the 2GAUSS Fitting Algorithm

Despite that fact that the two mean relations plotted
in Figure 4 agree within one- to two-sigma, we show in
this section that the bias between the two relations has
significance and arises from two sources. The first source
is intrinsic statistical bias in the 2GAUSS method itself.
Using Monte Carlo tests as described in Appendix B, we
find that this bias is approximately 3-5% downward and
has some slight dependence on the number of data points
used in the 2GAUSS fitting method. The Monte Carlo
computation of the bias is shown in the middle panel of
Figure 6. We call this bias b2G.

The second source of bias is due to some combination
of BCG movement with respect to the parent halo (see
van den Bosch et al. 2005) and the incorrect selection of
BCGs by the maxBCG cluster detection algorithm (i.e.
mis-centering). We can test for this effect by reconstruct-
ing the BGVCF around randomly selected cluster mem-
ber galaxies output from the maxBCG cluster detection
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Fig. 5.— The mean velocity dispersion (i.e. exp (< lnσ>)), percent scatter in σ, and background level p measured for the SDSS data. On
the lower right, we show the mass mixing model integrated over the entire data set and plotted over the cluster-weighted PVD histogram
of the entire data set. We did not fit the stacked PVD histogram directly. The reduced chi-square between the data and the mass mixing
model is 1.31, where we have used a robust, optimal bin size given by Izenman (1991). The line fits of equations 10, 11, and 12 are shown
as solid lines in the lower left, upper left, and upper right panels respectively. Note that we have plotted 100 × S in the upper right panel,

not the linear relation between S2 and ln
“

N200

gals

”

.

TABLE 2
MaxBCG mass mixing parameters by N200

gal bin.

Mean N200

gal < lnσ> (geometric mean velocity dispersion) 100 × S (percent scatter in σ) p (background level)

3.00 5.31 ± 0.05 40.5 ± 3.5 0.276 ± 0.012
4.00 5.36 ± 0.03 33.6 ± 2.2 0.252 ± 0.008
5.00 5.42 ± 0.03 35.3 ± 2.3 0.278 ± 0.013
6.00 5.55 ± 0.07 36.1 ± 4.6 0.266 ± 0.015
7.00 5.59 ± 0.04 38.3 ± 2.2 0.253 ± 0.015
8.00 5.81 ± 0.05 26.5 ± 5.2 0.232 ± 0.015
9.88 5.74 ± 0.04 40.0 ± 2.1 0.237 ± 0.010
14.1 5.95 ± 0.04 34.5 ± 2.4 0.210 ± 0.011
18.9 6.13 ± 0.13 33.7 ± 8.1 0.209 ± 0.033
22.7 6.09 ± 0.05 39.0 ± 2.3 0.187 ± 0.023
28.7 6.25 ± 0.05 23.5 ± 3.0 0.149 ± 0.015
35.9 6.29 ± 0.07 28.9 ± 4.9 0.164 ± 0.026
44.7 6.47 ± 0.09 20.2 ± 3.6 0.156 ± 0.036
58.4 6.47 ± 0.09 34.5 ± 2.5 0.137 ± 0.030
87.8 6.75 ± 0.12 14.9 ± 9.4 0.072 ± 0.026
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Fig. 6.— The bias correction to the mean velocity dispersion
for the maxBCG clusters. Left: The ratio of the random member
centered dispersions to < ln σ>, rRM . Middle: The statistical bias
in the 2GAUSS method, b2G. See Appendix B for details. Right:
The ratio of < lnσ > to the geometric average of the ICVDs for
each bin in N200

gal , rICV D. The circles in the right panel show the

quantity
√

2b2G/rRM for each bin in N200

gal . Note that the right

panel indicates
√

2b2G/rRM ≈ rICV D .

algorithm. If the BCGs are picked correctly and are at
rest with respect to their parent halos, then by picking
a random member galaxy, we should observe the mean
velocity dispersion increase by

√
2. This calculation as-

sumes that each stack of similar velocity dispersion clus-
ters has a Gaussian PVD histogram. This test is per-
formed in the data in the left panel of Figure 6. We
see that the random member centered dispersions are in-
creased above < lnσ > for each bin in N200

gal , but by less

than
√

2. This result indicates that either or both of
the situations discussed above is happening. The ratio
of the random member centered dispersions to < ln σ >
is denoted as rRM .

We can test the above conclusion by using the ICVDs
computed in §4.3. To do this, we calculate the ratio
of < lnσ > to the geometric average of the ICVDs for
each bin in N200

gal . This ratio is plotted in the right panel
of Figure 6 and is called rICV D. We can also estimate
this from the computations described in the previous two
paragraphs. We compute

√
2b2G/rRM for each bin N200

gal ;
this quantity is shown in the right panel of Figure 6. This
computation assumes that the biases add linearly in the
logarithm of the velocity dispersion.

We find that generally
√

2b2G/rRM ≈ rICV D within
the one-sigma errors. This observation indicates that
our explanation of the bias observed in Figure 4 is self-
consistent. To correct the < lnσ > values for each bin
in N200

gal , we use the mean of the quantity
√

2b2G/rRM

because the ICVDs are limited to low redshift, better
sampled clusters, and our measurements are quite noisy.

In Figure 7, we repeat the above computations for the
mock catalogs. We again find that

√
2b2G/rRM ≈ rICV D

and our explanation of the bias is self-consistent. Fur-
thermore, since we know the true velocity dispersion val-
ues we can directly test our arguments above in an ab-
solute sense. This comparison is discussed in §5.3.2. We
find that in fact, our correction will likely over correct
the mean velocity dispersion so that it is 5-10% too low.
Briefly, this effect occurs because the random “member”
we select is in fact not always a member of the cluster.

Fig. 7.— The bias correction to the mean velocity dispersion for
the mock catalogs. The panels are the same as those in Figure 6.
According to the right panel,

√
2b2G/rRM ≈ rICV D holds in the

mock catalogs as well.

Finally, the Monte Carlo tests described in Appendix B
allow us to test for bias in S2 as well. We find and correct
for bias in this parameter and note that on average we
measure slightly lower values of S2 than we should, by
about 5-10%.

5.3. Tests of the Mass Mixing Model

We now present several checks of our method for es-
timating mass mixing. These checks fall in three broad
categories. The first set are done with the data itself
and test for self-consistency along with dependence on
sample selection functions and/or redshift. The second
set are done with mock catalogs. Here we run the meth-
ods developed above on the mocks in the same way they
are run on the data, and ask whether we can recover
the true velocity-dispersion–richness relation for halos.
If the measurements on the mock catalogs do not match
the true values, then we will suspect that some of the
assumptions made above are not adequate to sufficiently
describe the BGVCF (i.e. we might suspect that the
infall component of the PVD histogram contributes sig-
nificantly).

The third set of tests are done with a spectroscopically-
selected catalog run on lower redshift data, the C4 cata-
log (Miller et al. 2005). For this sample, we can compute
the distribution of velocity dispersion at fixed richness by
directly computing velocity dispersions for each individ-
ual cluster. We can then test our methods by comparing
the measurements based on the stacked PVD histogram
to the true measured distributions.

5.3.1. Data Dependent Tests

As a first check of our method with the data, we look
for self-consistency. In the lower right panel of Figure 5,
we plot the mass mixing model integrated over the entire
data set using equations 3, 7, 10, 11, and 12 on top of
the full cluster-weighted stacked PVD histogram. We did
not fit the stacked PVD histogram directly. The reduced
chi-square between the data and the mass mixing model
is 1.31, where we have used a robust, optimal bin size
given by Izenman (1991). The above model reproduces
the first four moments of the stacked PVD histogram
as a function of N200

gal and reproduces the stacked PVD
histogram to a good approximation, indicating that the
model is self-consistent.
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Fig. 8.— Tests of the mass mixing model with the data (upper panels) and with the high resolution mock catalogs (lower panels). Upper
Left: The ratio of the geometric mean velocity dispersion determined by the stacked PVD histogram to that determined by the IVCDs.
Upper Right: The percent scatter in σ computed directly from the individual cluster velocity dispersions (diamonds) to those computed
from the stacked PVD histogram (circles). Lower Left: The ratio of the geometric mean velocity dispersion determined by the stacked
PVD histogram in the high resolution simulation to the true values found by matching clusters to halos. Lower Right: The percent scatter
in σ computed using the stacked PVD histogram (circles) compared to the true values found by matching clusters to halos (diamonds).
The error bars for the simulation parameters are jackknife errors computed by breaking the sample into the same bins in Ngal as used
with measurements of the stacked PVD histograms. In the mock catalogs, note the 5-10% downward bias of the geometric mean velocity
dispersion, as determined by the stacked PVD histogram, with respect to the true values.

In the upper two panels of Figure 8, we compare the
model parameters computed from the ICVDs (diamonds)
computed using the BISIGMA method, with those com-
puted from the stacked PVD histogram (circles). The
two agree to within one-sigma. We note however that
the relation for the standard deviation of lnσ for the
individual cluster velocity dispersions looks “flatter” as
function of N200

gal than for the relation computed from the
shape of the stacked PVD histogram.

We hypothesize two possible explanations for this ob-
servation. First, the “flatness” could just be a statistical
fluctuation. Notice that according to the error bars, the
relations are consistent with each other in most instances
by less than one standard deviation. Second, the “flat-
ness” could be caused by a sampling effect with the popu-
lation of clusters used to compute the individual cluster
velocity dispersions. In other words, because we com-
puted the individual velocity dispersions be requiring a
cluster to have ten pairs in the BGVCF within three-
sigma of the BCG as given by the mean velocity disper-
sion relation, we selectively measure only a low redshift
subset of the cluster population.

This issue is however more than just insufficient sam-
pling. For small groups of galaxies, it may be impossible
to properly define an observationally-measurable velocity
dispersion unless one is willing to stack groups of similar

mass to fully sample their velocity distributions. Thus
we hypothesize that while the two relations disagree at
low richness, the relation computed from the shape of the
stacked PVD histograms may in fact be a better indica-
tor of scatter in the σ−N200

gal relation for all richnesses,
especially low richness clusters.

When computing the model above, we used the entire
magnitude-limited sample of the SDSS spectroscopy. We
can investigate selection effects by examining our model
in both magnitude- and volume-limited samples. The
volume-limited samples are constructed by extracting all
galaxies above 0.4L∗, and below the redshift at which
0.4L∗ is equal to the magnitude limit of the SDSS spec-
troscopy. Thus we are complete above 0.4L∗ up to fiber
collisions, out to this redshift. Between the volume- and
magnitude-limited samples, the differences in the mass
mixing parameters is only slight and within the one-
sigma errors.

We also binned the volume-limited sample in redshift
to check for evolution in the scatter. Although there
are only negligible differences in the scatter in mass be-
tween between the upper and lower redshift bins, there
is a larger difference between the mean relations for each
redshift bin. This evolution will be described in detail in
§6.1 for the full magnitude-limited sample.

Finally, we compare the mixing parameters measured
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with cluster members (with redshifts) defined by the
maxBCG algorithm only to those measured with the en-
tire spectroscopic sample (i.e. the full BGVCF). We find
no significant differences in this test. We might suspect,
as suggested earlier, that cluster members better trace
the fully virialized regions of clusters. Either infalling
galaxies do not contribute significantly, or the radial cut
used to select members of the BGVCF was small enough
that most of the infalling galaxies could be excluded, ex-
cept those directly along our line-of-sight.

5.3.2. Tests with the Mock Catalogs

After running the maxBCG cluster finder on the mock
catalogs, we measure the mass mixing of the identified
clusters in the same way that it is measured for the
maxBCG clusters identified in SDSS data. In the bot-
tom two panels of Figure 8, the mass mixing parame-
ters computed using the 2GAUSS method with the mass
mixing model for clusters measured in the higher resolu-
tion simulation are compared to the true relations, found
by matching our clusters to halos and then assigning a
given cluster the dark matter velocity dispersion of its
matched halo. We also performed the same analysis in a
lower resolution simulation. We find that we can success-
fully predict the mass mixing in both simulations above
their respective mass thresholds, except for the 5-10%
downward bias of the mean value.

The bias in the mean value of the velocity dispersion
in the mock catalogs is due to the imperfect selection
of member galaxies by the maxBCG cluster finding al-
gorithm. When we select perfectly centered clusters (i.e.
cluster in which the true BCG at rest in the halo is found
as the BCG by the maxBCG cluster finding algorithm)
and repeat the computation of rRM , we find that the
random member dispersions still do not increase by

√
2.

Instead, they increase by less than this factor and with
this measured rRM decreasing with N200

gal . However, we

can recover the factor of
√

2 if we use only halo centers
and only members within R200 of the halo center. Thus,
because we cannot perfectly select members, the quantity√

2/rRM is a little more than unity, so that the BCG bias

correction (in which one divides by
√

2b2G/rRM ) makes
the mean too low. We cannot test for this effect in the
data directly, but the simulations indicate that it is less
than 10%.

The matching between clusters and halos is done ac-
cording to a slight modification of the method used by
Rozo et al. (2007b,a). The halos are first ranked in order
of richness, highest to lowest. Then the cluster with the
most shared members with the halo is called the match.
If two clusters share the same number of members, the
one containing the halo BCG is taken as the match. If
these two criteria fail to produce a unique match (i.e. no
cluster contains the halo’s BCG), the cluster with a the
higher richness measure is chosen as the match. Finally,
if all three criteria still fail to produce a unique match,
the matching cluster is chosen at random from all clus-
ters that meet all three criteria. When a match is made,
both the cluster and halo are then removed from consid-
eration and the next highest richness halo is matched in
the same way. This procedure produces unique matches,
but may not match every halo to a cluster or every clus-
ter to a halo. Of the halos with matched clusters in the

high resolution mock catalogs, we find that the first cri-
teria fails in only 6.23% of all cases. In these failed cases,
only 5.20%, 0.68%, and 0.35% of the halos are matched
using the second, third, and fourth criteria respectively.

In the SDSS data the use of cluster members only to
construct the BGVCF caused no change in the amount
of mass mixing. We repeat this measurement in the
higher resolution simulation using only the cluster mem-
bers selected by the maxBCG algorithm to construct the
BGVCF. We see no significant improvement in the pre-
diction of the true mass mixing parameters using cluster
members only as compared to using all galaxies in the
BGVCF.

In the mock catalogs, we did not properly replicate the
selection function of the SDSS spectroscopic sample. Un-
fortunately, the mock catalogs have approximately half
the sky coverage area of SDSS sample, so that when the
proper selection function of the SDSS spectroscopic sam-
ple is applied, there are too few galaxies to use with our
methods. We require high signal-to-noise measurements
of the fourth moment of the BGVCF, which is not pos-
sible with only half the sky coverage area. However, we
can test for the effects of spectroscopic selection within
the C4 sample, as described below.

5.3.3. Tests with the C4 Catalog

Using the C4 catalog (Miller et al. 2005), we can per-
form an independent test of our mass mixing method.
The C4 catalog is produced by running the C4 clus-
ter finding algorithm on low redshift SDSS spectroscopic
data. This algorithm finds clusters using their density in
4-D color space and 3-D position space. We make use
of five pieces of information from the C4 catalog: a rich-
ness estimate, an estimate of the velocity dispersion of
each cluster, the BCG redshift, the mean cluster redshift,
and a “Structure Contamination Flag” (SCF). This flag
takes on the values of 0, 1, or 2, depending upon the
degree of interaction of a given cluster with any of its
neighbors. Isolated clusters have SCF= 0 and clusters
that have neighbors very close by (i.e. ∆z ≈ 0.01) have
SCF= 2. Clusters with SCF =1 are in between these two
extremes. The mean cluster redshift is the biweight mean
(Beers et al. 1990) redshift of all SDSS spectroscopically-
sampled galaxies within 1 h−1Mpc and ±0.02 in redshift
of the centroid found in the PVD histogram of the clus-
ter.

We use every cluster in the C4 catalog with SCF6= 2
and in the redshift range 0.03 < z < 0.12. Centering on
the BCGs listed in the C4 catalog, we process the clusters
in the same way we have processed the maxBCG clusters,
i.e. we measure the BGVCF and then apply the 2GAUSS
method with the mass mixing model to the PVD his-
togram. Instead of using a projected radius cut of R200

we used a fixed radius of 1h−1Mpc. We used a fixed
radius here because we have no estimate of the natural
radial scaling appropriate for the C4 richness measure.
In order to have sufficient statistics for the computation
of the mass mixing model, we are limited to splitting the
clusters into two logarithmically-spaced bins of richness.

We then compare our inferred distribution of velocity
dispersions with the distribution of velocity dispersions
for each individual C4 cluster in the catalog for each bin.
The results are shown in the upper two panels of Fig-
ure 9, which compares the lognormal with our derived
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Fig. 9.— The distribution of velocity dispersion in two bins of
richness for the C4 catalog. Upper panels show the measurement
for all clusters with SCF 6= 2 (those with close neighbors). Lower
panels use all clusters with SCF = 0 (isolated clusters). The bold
lines show the lognormal distributions measured by applying the
2GAUSS method with the mass mixing model to the C4 clusters us-
ing BCG redshifts in the same way as it is applied to the maxBCG
clusters. The regular lines are lognormal fits directly to the his-
tograms shown above. Notice that in the bottom panels, the high
velocity dispersion tail due to C4 clusters with close neighbors is
gone.

parameters to the best fit lognormal for the individual
C4 velocity dispersions. Note the slight bias in the mean
between the lognormal curves computed from the mass
mixing model and the curves fit to the C4 velocity dis-
persions.

In Figure 10, we repeat our measurements, but using
the cluster redshift instead of the BCG redshift. In this
case we see better agreement between the mass mixing
measurements and the C4 velocity dispersions. This re-
sult indicates that the slight bias in the mean was due to
movement of the BCGs. Finally, to be complete, we com-
pute the average velocity dispersion of the BCGs in each
bin of C4 richness, and then use this value to correct the
measurements made using BCG centers. We find that we
can reproduce the cluster redshift measurements through
this procedure. Our understanding of how mis-centering
and/or BCG movement effects our measurements is self-
consistent in both the data and mock catalogs. If we had
true cluster redshifts for the maxBCG clusters (i.e. an
accurate average redshift of all of the cluster members),
then according to the results of the C4 catalog, no cor-
rection due to BCG bias would have to be applied to the
mean velocity dispersion.

We note that there seems to be high dispersion
tail/shoulder in the histograms plotted in the upper pan-
els of Figures 9 and Figures 10. Including clusters with
SCF= 2 increases this shoulder. This result is consistent
with the finding of Miller et al. (2005) that clusters with
SCF= 2 have their measured velocity dispersions artifi-
cially increased by their nearby neighbors. This result
is also consistent with a finding of Evrard et al. (2007),
that the velocity dispersions of interacting dark matter
halos form a high tail in the lognormal distribution of
velocity dispersion at fixed mass. In the bottom panels
of Figures 9 and 10, we repeat our measurements using
cluster redshifts, now including only those clusters with
SCF= 0, (i.e. we exclude clusters with SCF= 1 or 2).
The distribution of dispersions from this set of clusters
is in better agreement with the mass mixing method.

In the maxBCG catalog, interacting clusters may not

Fig. 10.— Same as Figure 9 except the bold lines were made with
the mass mixing model using the mean cluster redshift, not the
BCG redshift. The geometric mean velocity dispersion as measured
by the mass mixing model now agrees with the true geometric mean
of the C4 clusters because we have used cluster redshifts and not
BCG redshifts. Notice again that in the bottom panels, the high
velocity dispersion tail due to C4 clusters with close neighbors is
gone.

be as significant of a problem because the clusters are
by definition much farther away from each other (i.e.
∆z ≥ 0.02 as opposed to ∆z = 0.01 for some clusters in
the C4 catalog). In fact, many of the clusters that the
C4 algorithm would flag as SCF= 2, the maxBCG al-
gorithm may group together. We do not mean to imply
that the maxBCG algorithm has a significant problem of
over-merging distinct objects, but only that the redshift
resolution of the cluster finder is less than the C4 algo-
rithm. Thus the high velocity dispersion shoulder would
likely be down-weighted by algorithmic merging of ob-
jects together in combination with sparse spectroscopic
sampling. For example, if two C4 clusters with SCF= 2
would be merged by the maxBCG algorithm, then the
velocity structure according to the maxBCG algorithm
would only be measured about a combination center, and
not two centers as in the C4 catalog. Therefore, in com-
bination with the sparse spectroscopic sampling, the rel-
ative weight of these two objects in a maxBCG PVD
histogram might be decreased as compared to a C4 PVD
histogram, where they would contribute twice as much
and possibly at higher velocity dispersion. While these
arguments remain untested at the moment, the high ve-
locity dispersion shoulder seen in the upper panels of
Figures 9 and 10 has a clear origin and is well predicted
theoretically.

For the C4 sample, we can also investigate the effects
the spectroscopic selection. We recomputed our measure-
ments using three higher r-band magnitude limits, 17.0,
16.5, and 16.0. Because the SDSS main sample r-band
magnitude limit is 17.8, these three cuts replicate increas-
ing amounts of spectroscopic incompleteness. We found
no statistically significant differences between these mea-
surements, indicating that spectroscopic incompleteness
has a small effect on our measurements for the C4 cata-
log.

5.3.4. Sensitivity to the Scatter Model

Here we investigate the sensitivity of our results to the
choice of using a lognormal to describe the scatter in σ at
fixed N200

gal . There may be other distributions that could
possibly describe the scatter just as well. As a test case,
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we investigate how well a Gaussian distribution describes
the data in comparison with the lognormal.

We first study whether the two scatter models result in
different conclusions. In the SDSS data, we find that at
high richness the measured scatter assuming a Gaussian
or a lognormal differ by less than one standard devia-
tion. However at low richness, the measured scatter in
the two models differs by almost three standard devia-
tions. These results cannot tell us which model is better,
but only whether one model is equivalent to the other.
This seems to be the case in the SDSS, except at low
richness. From a theoretical standpoint, we prefer the
lognormal model because it always ensures that σ ≥ 0
without an arbitrary cutoff value.

In the C4 data the results are more dramatic: the mea-
sured scatter between the two models differs by around
eight to ten standard deviations. This fact primarily re-
flects the fact that in the C4 catalog, there is high ve-
locity dispersion tail/shoulder, which a lognormal distri-
bution can fit much more easily than a Gaussian. Such
a tail/shoulder may be less prevalent in the maxBCG
clusters for reasons discussed previously.

In the mock catalogs, the differences between the two
models follow the same differences as function of rich-
ness as seen between the two models in the SDSS data:
they are quite similar but become more different at low
richness. Here, we can test which model provides a bet-
ter match to the intrinsic dispersion in the catalog. We
find that the scatter derived from the Gaussian model
differs from the true scatter at around four standard de-
viations, whereas the scatter derived from the lognormal
model agrees well with the true scatter as shown in the
lower right panel of Figure 8. We have explicitly verified
that the distribution of velocity dispersion at fixed rich-
ness is approximately lognormal for the mock catalogs.
These results give us some confidence that the mock cat-
alogs describe the SDSS data well and that a lognormal
is a better approximation to the true distribution than a
Gaussian at all richness, but especially lower richnesses.

5.4. The Velocity Dispersion Number Function

Using the mass mixing model and the abundance func-
tion of the maxBCG clusters, we can integrate to find
the velocity dispersion function, usually defined as the
number density of clusters per d ln(σ). This technique
has been used to find the velocity dispersion function of
early-type galaxies in the SDSS (Sheth et al. 2003) and
to estimate the X-ray luminosity function of REFLEX
clusters (Stanek et al. 2006).

In the interest of brevity, the result presented here
is only approximate. We assume a ΛCDM cosmology
for our volume computation. We restrict our analy-
sis here to only those clusters in the redshift range
0.1 < z < 0.3 (over which the catalog is approximately
volume-limited), but we use the mixing results measured
from the extended catalog. This procedure is justified
because we previously observed no change in the mix-
ing results using the smaller volume-limited sample. We
do not include any corrections for the selection function
of the catalog, but note that for the maxBCG clusters
the completeness and purity are at or above the 90% level
and approximately richness independent above N200

gal = 10

(Koester et al. 2007a,b). Finally, we ignore any possible

redshift evolution of the N200
gal measure.

The velocity dispersion number function (solid curve)
with systematic and statistical errors (gray band) is given
in the left panel of Figure 11. Due to these approxi-
mations, the systematic errors in our result could likely
be reduced in a more detailed treatment. We aim here
to demonstrate the feasibility of such an exercise and
note that much more careful considerations of the selec-
tion function can be used to constrain cosmology rather
well (Rozo et al. 2007b). The systematic errors shown
here arise from the selection function, photometric red-
shift errors, and evolution in N200

gal . We estimate the total

systematic error to be approximately 30% in the veloc-
ity dispersion function normalization due these effects.
We also include a 10% systematic error in the geomet-
ric mean velocity dispersion due to the uncertain nature
of the BCG bias correction. The statistical error bars
are generated using a Monte Carlo technique, assuming
Poisson errors in the N200

gal number function and using the
covariance matrices of the parameters determined in the
chi-square line fits given by equations 10 and 11. The
statistical errors are too small to be shown alone. In-
stead, we plot the systematic error convolved with the
statistical errors as a gray band in the left panel of Fig-
ure 11.

Although a detailed treatment of the velocity disper-
sion function, which is beyond the scope of this paper, re-
quires more careful consideration of velocity bias and the
systematic errors, we provide a preliminary comparison
to the predictions of the velocity dispersion function for
three values of the power spectrum normalization. In or-
der to make this prediction for our sample of clusters over
the redshift range of the maxBCG catalog, 0.1 < z < 0.3,
we use the full statistical relation between velocity dis-
persion and mass determined in dark matter simulations
by Evrard et al. (2007), combined with the Jenkins mass
function (JMF Jenkins et al. 2001) and its calibration for
galaxy cluster surveys (Evrard et al. 2002). We vary σ8

between three values, 0.80, 0.90, and 1.00, while fixing
Ωm = 0.30. These three curves are plotted as the dashed,
dash-dotted, and dotted lines in the left panel of Figure
11.

We can give a qualitative estimate of the effect of
the selection function of the maxBCG catalog on the
velocity dispersion function. As noted previously, be-
cause the fraction of red galaxies in a clusters decreases
with cluster mass, the maxBCG catalog may be incom-
plete in the lowest mass groups. This incompleteness
would cause our calculation to underestimate the num-
ber density of such low mass groups, as seen in the
left panel of Figure 11 for the lowest velocity disper-
sion groups. Note that the low mass deviation of the
data from the predicted velocity dispersion functions oc-
curs below σ ≈ 350 km s−1. This velocity dispersion
is equivalent to N200

gal≈ 10, in agreement with the de-
termination of the selection function by Koester et al.
(2007a,b). Rozo et al. (2007b,a) has shown that at high
richness, the purity of the maxBCG catalog decreases.
This decrease in purity would cause an overestimate in
the number density of the most massive clusters, as seen
in left panel of Figure 11 for the highest velocity disper-
sion groups.

Also in the left panel of this figure, we compare our
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data to that of Rines et al. (2006) who compute the ve-
locity dispersion function using an X-ray selected sam-
ple of local clusters. Rines et al. (2006) define a regular
sample which excludes low redshift clusters and combines
any multiple X-ray peaks within the clusters into a single
peak. They also define a maximal sample which includes
all low redshift clusters and counts clusters with multiple
X-ray peaks as two objects. We find good agreement be-
tween our results and those of Rines et al. (2006) for both
samples. Note that the Rines et al. (2006) local sample
of clusters has a median redshift of 0.06 whereas our sam-
ple has median redshift closer to 0.20. Thus we should
not expect perfect agreement between the two samples
because of evolution in the mass function, but according
to the theoretical calculation, they would agree to well
within 30%.

In the right panel of Figure 11, we repeat the above
procedure using clusters in the high resolution mock
catalogs with redshifts between 0.1 and 0.3 and with
N200

gal ≥ 3. We make no attempts to correct for the selec-
tion function so that we can crudely estimate its effect.
The dashed curve with the gray band shows the results of
this procedure. In order to disentangle systematic errors
due to the selection function from those due to the mass
mixing model itself, we remake all of our measurements
in the high resolution mock catalogs using dark matter
halo centers instead of the maxBCG cluster centers; the
dotted curve shows the results.

To obtain an estimate of the true velocity dispersion
function, we additionally plot two other curves in the
right panel of Figure 11. The solid histogram shows the
true velocity dispersion function computed from all ha-
los with redshifts between 0.1 and 0.3 and which the
ADDGALS procedure assigned three or more galaxies
within 1 R200. The dash-dotted curve shows the ΛCDM
prediction for the velocity dispersion function computed
as discussed above with σ8 = 0.90 (the value in the sim-
ulation used for the mock catalog).

All four curves in the right panel of Figure 11 agree
to approximately within one-sigma of the histogram er-
ror bars, above the threshold of 500 km s−1. In the
mock catalogs, this threshold corresponds to approxi-
mately 1014h−1M⊙ and N200

gal = 10, in agreement with
the determinations of the selection function in the mock
catalogs by Rozo et al. (2007b). Note also that the ve-
locity dispersion function computed using dark matter
halo centers (dotted curve) approximately agrees with
the solid histogram of ADDGALS halos over a large
range in velocity dispersion. The systematic errors in
the mass mixing model alone are small relative to those
in the selection function.

6. DEPENDENCE OF THE VELOCITY DISPERSION ON
SECONDARY PARAMETERS

In discussing the scatter model and the corrected ve-
locity dispersion values, we assumed no other significant
dependencies of the velocity dispersion on parameters
besides N200

gal . We address this assumption here through
a variety of theoretically and observationally motivated
tests. In the same way that dark matter halos are pri-
marily characterized by their mass, we would like to de-
termine what parameters primarily characterize the ve-
locity structure of the maxBCG clusters. By splitting the
sample of clusters at a given N200

gal value on secondary pa-

rameters and measuring the velocity dispersion of these
secondary stacks with the 2GAUSS method, we can test
for any dependencies.

6.1. Redshift Evolution

The dependence of the velocity dispersion on redshift
is shown in the right panel of Figure 12. We find a
modest dependence, with higher redshift clusters having
increased velocity dispersions over lower redshift clus-
ters of the same richness. Following arguments given
by Evrard et al. (2007), we can roughly estimate if the
observed redshift dependence is due to evolution in the
σ − M relationship.

Evrard et al. (2007) have found a robust relation be-
tween the velocity dispersion and mass of dark matter
halos that is constant with redshift and has been tested
with several simulation codes:

σDM ∼ (h(z)M200c)
1/3

(13)

where σDM is the dark matter velocity dispersion, h(z) =
H(z)/100 km s−1 Mpc−1 is the dimensionless Hubble pa-
rameter, and M200c is the mass within a sphere of over
density 200 times the critical density at redshift z. Dif-
ferentiating at fixed mass gives

d lnσDM

dz
=

1

3

d lnh(z)

dz
=

h′(z)

3h(z)
=

Ωm(1 + z)2

2h(z)
2 . (14)

This quantity can be computed exactly, but given the
poor quality of our data when split into three times as
many bins, a rough approximation which uses the me-
dian redshift of our sample is sufficient. At z = 0.2,
h(z=0.2) ∼ 0.77, which gives d lnσDM/dz ≈ 0.36. Over
the redshift range of our sample, ∆z ∼ 0.25, so the ex-
pected change in lnσ is ∆ ln σ ∼ 0.1, assuming a constant
velocity bias. This change is too small to account for the
differences seen in Figure 12. Therefore we conclude that
there must be evolution in the N200

gal richness measure. A

fractional decrease in N200
gal of 30-40% from the middle

redshift bin to the upper redshift bin is consistent with
our results. Such an evolution is likely to be a combina-
tion of true evolution in the number of galaxies at fixed
mass (e.g. Kravtsov et al. 2004; Zentner et al. 2005) and
evolution in the definition of the richness estimator at
fixed halo occupation. There is evidence from the evolu-
tion of richness in both the data (see also Koester et al.
2007a) and the mock catalogs, that the current defini-
tion of N200

gal does have mild evolution. It may however,
be possible to use a slightly modified richness estimator
which does not evolve at fixed mass. We do not explore
this possibility further here, but note that velocity dis-
persion values will be useful in assessing the evolution of
the N200

gal measure and attempts to correct for it.
We finally note that the observed evolution could have

other explanations as well. Above redshift ∼ 0.12, the
spectroscopic sample is dominated by LRGs. A relative
velocity bias between galaxies of different colors and/or
luminosities (e.g. Biviano et al. 1992) in clusters could
potentially be the cause of the observed evolution.

6.2. Environmental Dependence and Local Density

Considerable attention has been devoted to the envi-
ronmental dependence of the velocity dispersion in N-
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Fig. 11.— The velocity dispersion number function with no corrections for the selection function of the maxBCG clusters (left) and its
reconstruction in the high resolution mock catalogs (right). Left: The theoretical prediction for the velocity dispersion number function
using the Jenkins mass function is combined with the N-body calibrated relation between mass and velocity dispersion, using the work
of Evrard et al. (2007), for three values of σ8. Each assumes that Ωm = 0.30. The circles and squares show the results of Rines et al.
(2006) for their regular and maximal local X-ray selected clusters samples. The solid line is the velocity dispersion function of the maxBCG
clusters. The gray band errors indicate the systematic errors, neglecting any corrections for the selection function, convolved with the
statistical errors in our measurements. Above approximately 1000 km s−1 the data is extrapolated. Right: The dashed line with gray
band errors shows the velocity dispersion function computed from clusters in the high resolution mock catalogs in exactly the same way
as done with the maxBCG catalog, neglecting any corrections for the selection function. To estimate the systematic errors in the mass
mixing model alone, we compute the velocity dispersion function using halo centers (dotted line) instead of BCGs. The solid histogram
shows the velocity dispersion function of all halos between redshifts of 0.1 and 0.3 which the ADDGALS algorithm assigned three or more
galaxies within 1 R200. This is compared with the ΛCDM prediction for the velocity dispersion function computed as in the left panel with
σ8 = 0.90 (the value in the simulation used for the mock catalog).

Fig. 12.— The dependence of exp(< ln(σ) >) at fixed richness
on the BCG photometric redshift. The dependence of the velocity
dispersion on redshift likely indicates evolution in the N200

gal mea-

sure. The solid lines are the best-fit power-laws to the highest and
lowest redshift bins.

body simulations (e.g. Sheth & Diaferio 2001). It has
been found that the velocity dispersion does depend on
local density, but only because massive halos tend to oc-
cupy more dense environments (i.e. halo bias) and the
velocity dispersion is strongly correlated with halo mass.
No direct dependence of the velocity dispersion on the lo-
cal density has been found (e.g. Sheth & Diaferio 2001).

In order to test this prediction, we construct four in-
dicators of local density: N200

gal of closest cluster, the pro-
jected distance to the closest cluster, the total number
of cluster members of any cluster within 5 h−1Mpc and
±0.04 in redshift, and the total number of clusters within
5 h−1Mpc and ±0.04 in redshift. This redshift cut is cho-
sen to match twice the redshift cut used in the maxBCG
percolation process to ensure that only clusters from one
redshift slice on either side of the cluster under consid-
eration are used.

We complete the test by comparing two binning

schemes. First, we bin in N200
gal and then on the lower

25%, middle 50%, and upper 25% quantiles of the local
density parameters within each N200

gal bin. This method
should roughly account for the mass trend with cluster
richness before comparing local environments. Second,
we reverse the binning orders, using the lower 25%, mid-
dle 50%, and upper 25% quantiles of the N200

gal distribu-
tion in the second step. If there is in fact no dependence
of the velocity dispersion on local density, except because
massive halos tend to occupy more dense environments,
then the relations in this binning scheme should be con-
stant for a given N200

gal bin. Note however that if the halo
occupation itself correlates with local density at fixed
mass, then our test could be significantly biased.

Using this technique, we find little significant depen-
dence of the velocity dispersion on any of our measures
of local density. Figure 13 shows the results of this test
for one of the parameters, the total number of clusters
within 5 h−1Mpc and ±0.04 in redshift. We have tested
these results for fixed bins in N200

gal and the local density
parameters, finding that they are robust. We applied
these tests to the mock catalogs as well, producing simi-
lar results.

6.3. Multiple Bright Members and BCG i-band
Luminosity

It has been shown that clusters which have undergone
recent mergers and show significant substructure are not
virialized (e.g. Iguchi et al. 2005; Diaferio & Geller 1996)
and that their velocity dispersions are increased above
the expectation for their mass (e.g. Cortese et al. 2004;
Halliday et al. 2004; Girardi et al. 2005). One might ex-
pect that a cluster with multiple bright members that
resemble the BCG has undergone a recent merger or has
significant substructure. However, it has also been shown
that dark matter halos which form earlier at fixed mass
have brighter, redder central subhalos (i.e. brighter, red-
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Fig. 13.— Dependence of the velocity dispersion on secondary parameters. Upper left: The histogram of the total number of clusters
within 5 h−1Mpc and ±0.04 in redshift of each BCG in the BGVCF. Upper right: The velocity-dispersion–N200

gal relation in bins of the

number of clusters in a projected volume of each BCG. Lower left: The relation between velocity dispersion and the number of clusters in
a projected volume of BCG in bins of N200

gal . Lower right: The dependence of the velocity dispersion–N200

gal relation on the absolute i-band

magnitude of the BCG. No secondary parameter dependence would result in constant relations in the lower left panel and completely
parallel relations with the same normalization in the upper right panel, assuming the halo occupation does not correlate with local density
at fixed mass.

der BCGs) and lower richness (e.g. Wechsler et al. 2006;
Croton et al. 2007). Note that a brighter BCG at fixed
mass for earlier forming halos likely corresponds to a
larger magnitude difference between the BCG and the
member galaxies.

We repeat the first binning scheme used above with
the i-band magnitude difference of the BCG and the
next brightest cluster member as the secondary param-
eter. For each bin in N200

gal , the brightest member and
BCG i-band magnitude difference distribution is split by
its lower 25%, middle 50%, and upper 25% quantiles.
The naive expectation that clusters with more than one
bright member might have undergone a recent merger
or have significant substructure is not born out by the
velocity dispersions, which show no significant increase.
However, because the computations are done at fixed
richness, it could be that late-forming halos, which have
higher richness for their mass, also have higher velocity
dispersions for their mass, because they merged recently,
so that the two effects conspire to roughly cancel each
other. Unfortunately, this hypothesis is difficult to test
observationally.

One can similarly test for mass dependence of the clus-
ters on the luminosity of the BCG alone. In the lower
right panel of Figure 13, we plot the velocity dispersion of
the clusters first binned in N200

gal and then in the absolute

i-band magnitude of the BCG using the lower 25%, mid-

dle 50%, and upper 25% quantiles within each N200
gal bin.

We see dependence on this parameter: at fixed richness,
clusters with more luminous BCGs have higher velocity
dispersions. This same effect is observed in the stacked
X-ray measurements of these same clusters by (Rykoff
et al. 2007, in preparation); here, clusters with brighter
BCGs have on average more X-ray emission. These ob-
servations indicate that BCG luminosity may contain ad-
ditional information about cluster mass beyond that in
N200

gal alone.
In the case of BCG i-band luminosity, the expectd

correlation mentioned above consistent with the obser-
vations, since early-forming halos would have brighter
BCGs and lower richness, so that at fixed richness, halos
with brighter BCGs tend to be more massive. However,
for this explanation to be consistent with the previous
hypothesis concerning the magnitude difference of the
BCG and the next brightest cluster member, we must
assume that whether or not a halo has formed through a
major merger recently correlates more strongly with the
magnitude difference of the BCG and the next bright-
est member galaxy, than with the BCG i-band luminos-
ity alone. In other words, we need to assume that the
BCG i-band luminosity is not indicative of a recent major
merger (which would cause the velocity dispersion to be
overestimated at fixed mass), even though BCG i-band
luminosity correlates with formation time.
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6.4. Cluster Concentration and Radial Dependence

Although we cannot measure the true mass concen-
tration, we investigate the dependence of the velocity-
dispersion richness relation on the galaxy concentration,
measured here by the ratio of the number of cluster mem-
bers (determined by the maxBCG cluster finder, not the
number of pairs in the BGVCF) within 0.2 R200 to the
number of members within R200. We see no dependence
of the velocity dispersions on this parameter when the de-
pendence on N200

gal is accounted for first. When one bins
directly on this ratio, the velocity dispersion decreases
with increasing concentration.

Finally, we investigate the dependence of the velocity
dispersion on cluster radius. The scaling of σ with radius
is measured in logarithmic bins of N200

gal . In general, the
dispersion stays constant or decreases with radius. This
is consistent with the results from previous studies (e.g.
Rines et al. 2003; Rines & Diaferio 2006).

7. CONNECTING VELOCITY DISPERSION TO MASS

Using velocity measurements to probe cluster
masses has a long history in astronomy; the virial
theorem was the earliest tool used to determine
cluster masses (e.g. Zwicky 1933, 1937; Smith
1936) and remains in use today (e.g. Girardi et al.
1998; Struble & Rood 1999; Rines et al. 2003, 2006;
Rines & Diaferio 2006). Other methods for determining
cluster masses, such as the projected mass estimator
(a modified virial mass estimator) (e.g. Heisler et al.
1985; Rines et al. 2003; Rines & Diaferio 2006), the
Jeans equation (e.g. Carlberg et al. 1997; Girardi et al.
1998; van der Marel et al. 2000; Biviano & Girardi
2003; Rines et al. 2003; Katgert et al. 2004), and the
caustic method (Diaferio & Geller 1997; Diaferio 1999)
have also been widely applied (e.g. Biviano & Girardi
2003; Rines et al. 2003, 2006; Diaferio et al. 2005;
Rines & Diaferio 2006).

In order to connect the velocity-dispersion–richness re-
lation to a mass–richness relation, we use the recent re-
sults of Evrard et al. (2007), who found a dark matter
virial relation which appears to hold for all redshifts and
a wide range of cosmologies. Evrard et al. (2007) used
a suite of dissipationless simulations run with a range of
simulation codes and resolutions to measure the velocity
dispersion of dark matter particles at fixed mass. They
find that the dark matter virial relation can be charac-
terized as a power-law,

M200c = 1015M⊙

1

h(z)

(

σDM

σ15

)1/α

(15)

where h(z) = H(z)/100 km s−1 Mpc−1 is the dimen-
sionless Hubble parameter and M200c is the mass within
a sphere of over density 200 times the critical density at
redshift z. The values of the fit parameters for the mean
relation are found to be σ15 = 1084 ± 13 km s−1 and
α = 0.3359± 0.0045.

Evrard et al. (2007) additionally found that the scatter
of velocity dispersion at fixed mass is well fit by a lognor-
mal with a small scatter of only 0.0402±0.024. However,
the lognormal scatter in velocity dispersion at fixed mass
does not directly relate to the scatter in mass at fixed ve-
locity dispersion without assuming the shape of the halo

mass function. In light of this difficulty, and the small
scatter in the relation, we take the mean power-law re-
lation given by Evrard et al. (2007) to be a completely
deterministic relation.

As there is still substantial theoretical uncertainty in
velocity bias, this will be a primary driver of the system-
atic error in the N200

gal -mass relationship. To avoid this
uncertainty, we constrain a combination of velocity bias
and mass as described below. Using the standard defi-
nition of velocity bias, bv = σGAL/σDM where σGAL is
the galaxy velocity dispersion and σDM is the dark mat-
ter velocity dispersions. The virial relation for galaxy
velocity dispersions then becomes

b1/α
v M200c = 1015M⊙

1

h(z)

(

σGAL

σ15

)1/α

, (16)

where the quantity b
1/α
v M200c parameterizes our lack of

knowledge about velocity bias.
To use this relation with the maxBCG clusters, we

calculate <σ1/α > using the measured lognormal distri-
bution of σ in each bin. The result is

<σ1/α >=

exp

(

1

2α
lnµmes

(2) − 1

4α
ln γ2

mes +
1

8α2
ln γ2

mes

)

(17)

where γ2
mes and µmes

(2) are given by the 2GAUSS fits for

each N200
gal bin (i.e. equations 8 and 9 respectively). This

value is then substituted for σGAL in equation 16. To
account for the factor of h(z), we repeat the 2GAUSS
fits for each N200

gal bin, weighting each pair in the BGVCF

by 1/h(z)α. The inclusion of this factor has a negligible
effect on the observed evolution in §6.1. We include the
correction for BCG bias by dividing our results by the
average BCG bias factor raised to the 1/α power.

We apply this method first to the mock catalogs, to
determine whether we recover an unbiased estimate of
the mass–richness relation. In the left panel of Figure
14, we show the results of this procedure applied to the
mock catalogs. The best-fit power-law is plotted as the
solid curve. For comparison, the mean mass of a cluster
in each N200

gal bin, computed as the mean M200c mass
of the halos matched to the clusters within the bin, is
shown as the diamonds. We again see the slight over
correction of the BCG bias correction. Because the mass
is proportional to σ3, the masses we measure in the mock
catalogs are too low by ∼ 15 − 25%. The dashed line in
the left panel of Figure 14 shows the best-fit power-law
relation between N200

gal and mass in the simulation, but

with the normalization increased by 25%. Note that in
the mock catalogs the velocity bias is defined to be unity,
so that equation 16 should be exact with bv = 1 and
σGAL = σDM .

The results for the maxBCG clusters are given in the
right panel of Figure 14. The error bars include the the-
oretical uncertainties in both α and σ15. The theoretical
uncertainties increase the error bars in our mass determi-
nations by a fixed factor uniformly across each bin. The
best-fit power-law for the mass-N200

gal relation is

b1/α
v M200c =
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Fig. 14.— The dark matter virial relation applied to our stacks
of clusters in the mock catalogs (left, circles), and in the data
on maxBCG clusters (right, circles). The mean M200c masses for
matched halos in each bin are plotted for the mock catalogs on
the left (diamonds). The solid line shows the best-fit power-law

relationship between b
1/α
v M200c and N200

gal . The dashed lines show

the mass normalization shifted upward by 25% to account for the
over correction of the BCG bias correction.

(

1.18+0.12
−0.11 × 1014h−1M⊙

)

×
[

N200
gal /25

]1.15±0.12

,

and is shown as the solid line in the right panel of Figure
14. The dashed line shows the approximate effect of the
BCG bias over correction by shifting the mass normal-
ization up by 25%.

8. CONCLUSIONS AND FUTURE PROSPECTS

In this paper we have presented new measurements of
the BCG–galaxy velocity correlation function (BGVCF)
for a sample of clusters identified from the SDSS with the
maxBCG algorithm (Koester et al. 2007a,b). Through
careful modeling of the shape of the BGVCF, we have
measured the mean and scatter in velocity dispersion at
fixed N200

gal . We find that the mean velocity dispersion at

fixed N200
gal is well described by a power-law. The mean

velocity dispersion increases from 202 ± 10 km s−1 for
small groups to more than 854 ± 102 km s−1 for large
clusters. The scatter in velocity dispersion at fixed N200

gal

is at most 40.5 ± 3.5% and falls to 14.9 ± 9.4% as N200
gal

increases. We test our methods on both the C4 cluster
catalog and on mock catalogs. Although there may be
a slight 5-10% downward bias in the mean velocity dis-
persion due to the corrections made for BCG bias, our
method successfully recovers the true scatter in both of
these data sets with little bias.

The method presented here for measuring the scatter
depends on two assumptions: (1) the Gaussianity of the
PVD histogram of a stacked set of clusters with simi-
lar velocity dispersion, and (2) the lognormal shape of
the distribution of velocity dispersion at fixed richness.
While the first assumption is valid in cluster samples
produced by running the cluster finder on realistic mock
catalogs, it is hard to directly test observationally. Simu-
lations with galaxies based on resolved dark matter sub-
halos may clarify this issue. The second assumption is
directly supported in the mock catalogs and by inde-
pendent observations with the C4 catalog (Miller et al.
2005).

In addition to the measurement of the mean and scat-
ter in the velocity-dispersion–richness relation, we ex-

plore the dependence of the velocity dispersion on pa-
rameters secondary to richness. The velocity dispersion
seems to be affected significantly by the i-band luminos-
ity of the BCG. We also see velocity dispersion depen-
dence on redshift and local density. While the correlation
between N200

gal , velocity dispersion, and the BCG i-band
luminosity may be a true physical effect, we interpret the
correlations of N200

gal and velocity dispersion with redshift
and local density as unphysical, systematic effects of the
maxBCG cluster finder. Ultimately, it may be that the
best way to estimate cluster mass will be to use multiple
observables in combination. By making the comparisons
of different parameters and their dependence on veloc-
ity dispersion as done in this paper, we will be able to
determine which observables correlate significantly with
mass.

Our methods, in combination with weak lensing mass
profiles measured for stacked maxBCG clusters (Shel-
don et al. 2007, in preparation; Johnston et al. 2007,
in preparation) and the radial phase-space information
contained in the BGVCF, will allow for precise determi-
nations of the velocity bias and the anisotropy of galaxy
orbits in clusters. Precise measurements of these quan-
tities will help to constrain current theoretical models
of galaxy clustering and the velocity bias between dark
matter and galaxies.

This work also demonstrates the feasibility of using
our methods to measure the velocity dispersion function.
The velocity dispersion function computed in this pa-
per agrees with the results of Rines et al. (2006). How-
ever, given the current estimated systematic errors in
our computation (due the selection function, photomet-
ric redshift errors, evolution in N200

gal , and the BCG bias

correction), we are unable to reach any strong conclu-
sions about the magnitude of σ8. With this caveat, we
do however see from Figure 11, that our results support
a higher value of σ8 than the most recent CMB+LSS
estimates (e.g. Spergel et al. 2006; Tegmark et al. 2006),
as recently suggested by other analyses (e.g. Buote et al.
2006; Evrard et al. 2007; Rozo et al. 2007b). This con-
clusion is however degenerate with velocity bias. A ve-
locity bias of approximately 1.1-1.2 could equally well
explain our results.

The methods presented in this paper are a significant
advancement for the use of optical cluster surveys to de-
termine cosmology. Our method can fully characterize
the velocity-dispersion–richness relation for any optical
cluster survey with a large spectroscopic sample. Future
redshift surveys with more galaxy redshifts will allow for
more precise measurements of this scatter. Specifically,
because the SDSS spectroscopy is mostly at or below
z ∼ 0.1, a higher redshift sample of spectroscopy would
allow for further tests of any redshift dependence.

The measurement of the scatter in mass–observable
relations is key to the measurement of cosmology
from galaxy cluster surveys and self-calibration schemes
(Lima & Hu 2004, 2005). Through adding an additional
piece of observational information, the methods devel-
oped here will undoubtedly tighten constraints on and
lift degeneracies in current estimates of cosmology.
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APPENDIX

A. GROUP WEIGHTED EM-ALGORITHM FOR 1-DIMENSIONAL GAUSSIAN MIXTURES WITH EQUAL MEANS

Here we present the modification of the standard EM-algorithm (Dempster et al. 1977) for Gaussian mixture
models that is used to fit the PVD histograms. It has the advantage of weighting clusters (or groups) of points
evenly and fixing the the mean of each Gaussian to be equal. We also verify that the algorithm works using simple
numerical experiments. The derivation and notation given here is that of Connolly et al. (2000) with our changes
noted appropriately.

Let j index the number of Gaussians in the model, i index the data points, and Ni be the total number of data
points in the group from which the ith data point is drawn. The statistical model for the entire set data set will be a
sum of Gaussians plus a single constant background component. We differ from Connolly et al. (2000) by presenting
the derivation of the algorithm with the background components included. Letting the Gaussian components be given
as

φ(x, µ, σj) =
1

σj

√
2π

exp

(

−(x − µ)2

2σ2
j

)

(A1)

where µ is the common mean of all of the model components, σj is the standard deviation of the jth Gaussian, and
the background component, U(x), be given as

U(x) =
1

2L
(A2)

where 2L is the range of all of the data, X , we can write the model as

P (X |µ, σ1, . . . , σj) = p0 U(x) +
∑

j=1

pj φ(x, µ, σj) (A3)

where the pj ’s are the weights for each model component and we require that p0+
∑

j pj = 1. This model is exactly that
of the standard EM-algorithm for Gaussian mixtures. The difference here will be in the structure of the latent variables.

Let zij be defined such that zij = 1 if the ith data point is in the jth Gaussian and zij = 0 otherwise. Now we can
write the complete data log-likelihood as

L =
∑

i

zi0 ln (p0 U(x)) +
∑

j

∑

i

zij [ln pj + lnφ(x, µ, σj)]. (A4)

Now we perform the expectation step of the algorithm given the current parameter guesses, θ̃, computing

Q=E(L |X, θ̃)

=
∑

i

E(zi0 |X, θ̃) ln (p0 U(x)) +
∑

j

∑

i

E(zij |X, θ̃) [ln pj + lnφ(x, µ, σj)]

=
∑

i

τi0 ln (p0 U(x)) +
∑

j

∑

i

τij [ln pj + lnφ(x, µ, σj)]

where τij is now weighted by cluster (or group) to give

τij =E(zij |X, θ̃ )

http://www.sdss.org/
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=P (xi is in group j |X, θ̃)

=
1

Ni

P (xi | group j)P (group j)
∑

r P (xi | group r)P (group r)

=
1

Ni

p̃j φ(xi, µ̃, σ̃j)

p̃0 U(x) +
∑

r p̃r φ(xi, µ̃, σ̃r)
(A5)

and for the background

τi0 =E(zi0 |X, θ̃ )

=P (xi is in background |X, θ̃)

=
1

Ni

P (xi | background)P (background)
∑

r P (xi | group r)P (group r)

=
1

Ni

p̃0 U(x)

p̃0 U(x) +
∑

r p̃r φ(xi, µ̃, σ̃r)
. (A6)

Now we compute the maximization step by maximizing Q over the parameters. Following Connolly et al. (2000),
we first rewrite Q into a more manageable form and then maximize Q. Using the definition of our model and its
components we have

Q =
∑

i

τi0 [ln p0 − ln (2L)] +
∑

j

∑

i

τij

[

ln pj −
1

2
ln 2π − lnσj −

(xi − µ)2

2σ2
j

]

. (A7)

Letting

µ̂ =

∑

ij τij xi
∑

ij τij
(A8)

and noting that
∑

ij

τij

σ2
j

(xi − µ̂)(µ̂ − µ) = 0, we get

∑

ij

τij(xi − µ)2 =
∑

ij

τij [(xi − µ̂) + (µ̂ − µ)]
2

=
∑

ij

τij

[

(xi − µ̂)2 + (µ̂ − µ)2
]

=
∑

j

Bj +
∑

ij

τij(µ̂ − µ)2,

where
Bj =

∑

i

τij(xi − µ̂)2. (A9)

Now we rewrite Q as

Q =
∑

i

τi0 [ln p0 − ln (2L)] +
∑

j

∑

i

τij

[

ln pj −
1

2
ln 2π − lnσj −

Bj

2σ2
j

− (µ̂ − µ)2

1σ2
j

]

. (A10)

The maximum of Q subject to p0 +
∑

j pj = 1 will be given by letting µ be given by equation A8 and the rest of the
parameters by

p̂j =

∑

i τij
∑

ij τij
, σ̂2

j =
Bj

∑

ij τij
. (A11)

The primary differences between the derivation given here and that given by Connolly et al. (2000) are the re-
weighted expectation values of zij , equations A5 & A6, and that the means of each of the Gaussian components are
fixed to one value (i.e. equation A8). The cluster-weighting is encoded in the factor of 1/Ni in equations A5 and A6.
Each cluster of points contributes an equal amount to the parameters of the mixture model, making the total model
wighted by cluster, not by point.

In Figure 15, we plot the point-weighted histogram of data created from 5000 and 500 random draws from two
Gaussians with dispersion 800 and 300 respectively along with the standard EM algorithm fit using 10 components.
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Fig. 15.— A simple test of the cluster-weighted EM algorithm. The bold line and histogram are cluster-weighted; the thin line and
histogram are point-weighted. The point-weighted histogram can statistically “hide” non-Gaussianity because it allows one component to
contribute the majority of the points to the histogram, and thus determine its shape. The cluster-weighted histogram eliminates this issue
by forcing each component to contribute equally. See text for details.

We also plot the cluster-weighted histogram of the same data fit with the EM algorithm derived above using 10
components (bold line). The shapes seen in the figure are expected. In the point-weighted case, the 5000 samples of
the 800 width Gaussian dominate the PVD histogram so it appears to be Gaussian. However, in the cluster-weighted
case, the two Gaussians of width 800 and 300 contribute equally. Thus we explicitly see the the non-Gaussianity in
the histogram. In effect, by not weighting the histogram by cluster, one can “hide” non-Gaussianity statistically.

B. STATISTICAL BIAS IN THE 2GAUSS METHOD

In this appendix, we describe the statistical bias correction we apply to the 2GAUSS method. Suppose we have ran-
dom samples, D = {d1, d2, . . . , dN}, from a distribution, p(x), characterized by a set of parameters, z = {z1, z2, . . . , zn},
so that we can write p(x; z). A simple example would be a Gaussian characterized by its mean and variance. From
these random samples, we can construct estimators, µ̂, of the moments of the distribution, µ(i) =

∫∞

−∞
xip(x; z)dx.

A well known example of an estimator of µ(1) is the mean, µ̂ =
∑N

k=0 dk/N . An estimator of the ith moment of a

distribution is said to be unbiased if
∫∞

−∞
µ̂(D) p(x; z)dx = µ(i). In some cases the sampling distribution of an estimator

can be computed exactly, so that bias can be computed and corrected for analytically.
Because the 2GAUSS method is rather complicated, instead of attempting to compute the bias analytically, we use

a Monte Carlo method to estimate the bias. For each bin in N200
gal , we construct 10,000 Monte Carlo samples of the

set of velocity separation values, v = {v1, v2, . . . , vN}, using the measured parameters < lnσ > and S2, the number
of clusters in the bin, and the number of samples per cluster in the bin. Then we remeasure < lnσ > and S2 for
each Monte Carlo sample. From these 10,000 reestimations of < lnσ > and S2, we estimate the bias in the 2GAUSS
method. We then use this bias to correct our measurements.

We note here that the Monte Carlo tests indicate that the estimations of < lnσ > and S2 are correlated in a non-
trivial way. The BAYMIX method would naturally account for these correlations in a transparent way. Alternatively,
a different, unbiased procedure could be used to estimate < lnσ > and S2. One candidate method might be the use
of Gauss-Hermite moments (van der Marel & Franx 1993). Given that we already have a well developed method to
estimate < lnσ > and S2, we do not explore this possibility here. A detailed understanding of the correlations is
beyond the scope of this work, but would be necessary for the use of these results to understand cosmology precisely.
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